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ABSTRACT

 
 
Free radicals threaten various tissues and are involved in the development and 
progression of many pathological states and diseases. More than other tissues, the skin is 
exposed to a variety of chemical, environmental, and physical agents which are capable 
of inducing radical formation resulting in the development of oxidative stress.  The skin 
possesses an elaborate antioxidant network to deal with reactive oxygen species (ROS); 
however, excessive exposure and/or radical production can overwhelm the antioxidant 
capabilities of the skin causing oxidative damage to proteins, DNA, and lipids.  The 
central hypothesis of these studies is that exposure to oxidizible chemicals and/or 
environmental agents to skin are able to induce free radical formation with subsequent 
antioxidant reduction, oxidative DNA, lipid and protein damage, and inflammation. 
Excessive inflammatory-based oxidative modification of the major skin constituents 
following long-term exposure could trigger redox-sensitive cell-signaling pathways via 
activator protein 1 (AP-1) expression thereby causing the development of skin cancer.  
The specific aims of the project are: (1) To study the mechanisms of phenol (PhOH)-
induced oxidative injury in skin of animals with normal and reduced antioxidant 
milieu; (2) To assess the role of the antioxidant defense system of the skin of young 
and old mice exposed to cumene hydroperoxide (Cum-OOH); (3) To investigate the 
role of oxidative stress and the activation of AP-1 protein in the development of skin 
cancer; (4) To study the mechanisms of simulated solar light (SSL) induced skin 
injury with respect to antioxidant imbalance, oxidative damage of DNA, protein, 
and lipids. Results obtained from these studies provide critical knowledge about the 
mechanisms of dermal toxicity of phenolic compounds, organic peroxides and UV light 
with regard to reactive oxygen intermediates formed in skin.  The efficiency of the 
antioxidant network is essential to withstand an oxidative skin injury due to aging, 
occupational and environmental exposures. 
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LITERATURE REVIEW 
 
The skin is the largest bodily organ and is comprised of 3 separate layers: the epidermis, 

the dermis, and the subcutaneous tissue (Figure 1).  Each of these layers is distinct in its 

composition and cellular makeup.  The subcutaneous layer of the skin is composed of 

adipose tissue while the dermis is comprised of connective tissue and an extracellular 

matrix of collagen and elastin.  The microvasculature, which supplies the epidermis with 

blood and nutrients, as well as connective tissue mast cells and macrophages are located 

within the dermis (Elmets et al., 1994). 

 

The epidermis is comprised largely of keratinocytes (greater than 95% of cells), as well 

as melanocytes, Langerhans’ cells, and Merkel cells.  Within the epidermis, the basal 

keratinocytes morphometrically differentiate into anucleate cells thereby forming the 

stratum corneum.  Melanocytes produce melanin which provides the skin pigmentation.  

Merkel cells are neuroendocrine cells thought to function as mechanoreceptors for tactile 

responses thereby allowing the manipulation of objects.  Langerhans cells are bone 

marrow derived antigen presenting cells (McKenzie and Sauder, 1990; Bos and 

Kapsenberg,, 1993; Elmets et al., 1994). 

 

The overproduction of reactive oxygen species (ROS) has generally been accepted as a 

major contributor to the development of various cutaneous disorders, skin diseases, and 

skin aging. The skin is exposed to numerous environmental, chemical, and physical 

stressors, such as ultraviolet radiation (UVR), which result in the development of 

oxidative stress and skin tissue damage. While the skin possesses an elaborate antioxidant 

 
 

1



www.manaraa.com

defense system to prevent oxidative damage, excessive exposure to occupational and 

environmental insults can overwhelm the cutaneous antioxidant capacity and lead to 

oxidative injury and premature aging. 

Radical Formation and Skin Disease 

Free Radicals 

Free radicals are reactive intermediates containing one or more unpaired electrons and are 

capable of choosing their directional spin which tends to change constantly.  Free radicals 

are less stable and more reactive than non-radical species.  A radical can donate its 

unpaired electron to another molecule or accept one electron from another species 

resulting in production of an electron pair. This can also result in the formation of new 

radical species which will subsequently trigger a propagation of chain reactions (Wolf et 

al., 1998; Thiele, 2000).   

 

Many free radicals are highly reactive intermediates with an extremely short life span.  

Free radical production occurs continuously in vivo by enzymatic and non-enzymatic 

reactions such as those resulting from regular phagocytic processes (Trenam et al., 1992).   

Free radicals can be endogenously derived during normal metabolism, immune reactions, 

and/or pathological conditions (Powers and Hamilton, 1999). Additionally, free radicals 

can be formed exogenously after environmental insults from pollution, atmospheric 

gases, ultraviolet radiation, microorganisms, viruses, and xenobiotics (Fuch et al., 1989; 

Nishi et al., 1991; Halliwell and Cross, 1994; Tyrrell, 1994; Evelson et al., 1997; Thiele 

et al., 1997; Podda et al., 1998; Lopez-Torres et al., 1998). 
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Oxygen-derived free radicals are of particular importance to biological systems 

(Halliwell, 1999, 2000).  Oxygen radicals are able to reversibly or irreversibly damage of 

all biochemical classes of molecules including nucleic acids, proteins, amino acids, lipids 

and lipoproteins, and carbohydrates (Halliwell, 1999, 2000).  Oxygen has a ground state 

containing an even number of electrons.  Molecular oxygen contains 2 unpaired electrons 

in different orbitals; however, covalently bound O2 has an even number of electrons.  

Under certain conditions, O2 can be reduced to form superoxide.  Some superoxide anion 

(O2·-) is formed when the mitochondrial inner membrane leaks electrons to O2 during 

cellular respiration.  The conversion of O2 to superoxide occurs as a result of the 

enzymatic activities of xanthine oxidase, aldehyde oxidase, and the membrane-associated 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Halliwell, 1999, 2000; 

Gutteridge and Halliwell, 2000; Wolf et al., 1998).   

 

Another radical species which is of importance to biological systems is the hydroxyl 

radical (OH·).  OH· is the most oxidizing species found in water because any oxidizing 

species in water is immediately converted to OH·.  As a result of this, OH· are the most 

reactive intermediates known and can attack and damage many biomolecules found in 

living cells and organs. It has been shown that formation of OH· can occur when organs 

and tissues are exposed to radiation, chemicals, and/or carcinogens (Halliwell, 2000).   

 

Uncontrolled production of reactive oxygen species (ROS) can lead to the damage of 

biomolecules in the human body resulting in the development of a number of diseases 

(Briganti and Picardo, 2003).  Overproduction and/or inadequate removal of ROS can 
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interfere with metabolism causing alterations in signal transduction pathways that 

contribute to the pathological state and injury within the cells and tissues (Trouba et al., 

2002).  Overproduction of free radicals has been involved in lipid and protein oxidation 

and modification, DNA mutations and breakage, and enzyme inactivation observed in 

many different tissues (Trouba et al., 2002).  

 

Free radicals can cause lipid peroxidation of polyunsaturated fatty acids (Gate et al., 

1999).  A hydroxyl radical and/or other strong one electron oxidants are able to initiate 

lipid peroxidation by abstracting a hydrogen atom from methylene carbon in the 

polyalkyl carbon of the fatty acid.  The fatty acid molecules with an unpaired electron are 

able to undergo molecular rearrangement by a reaction with O2 to generate a peroxyl 

radicals.  The peroxyl radicals are highly reactive intermediates that are known to alter 

membrane structure.  The radicals are also able to abstract hydrogen molecules from 

adjacent unsaturated fatty acids whose chemical structure makes them a target for free 

radical attack and results in the formation of lipid hydroperoxides and subsequently 

inducing the propagation of lipid peroxidation (Gate et al., 1999; Halliwell, 1999). 

 

DNA damage can also be a consequence of free radical overproduction.  Hydroxyl 

radicals are able to oxidize guanosine residues to 8-hydroxy-2’-deoxyguanosine (8-

OHdG) which is a well recognized biomarker of oxidative DNA damage.  Alterations in 

DNA (Kasai et al., 1986) have been known to be essential in mutagenesis (Ames, 1983), 

carcinogenesis (Floyd, 1990), aging (Fraga et al., 1990), and the development of 

inflammatory diseases (Ames, 1983).  Under normal conditions, altered DNA bases are 
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repaired by DNA glycosylase; however, overproduction of ROS and the resulting 

oxidative stress are able to circumvent DNA repair mechanisms and induce mutagenesis 

and carcinogenesis (Chung et al., 1991).  

 

Proteins are also a major target of free radicals and oxidative modification.  ROS could 

cause modifications of amino acid residues in proteins resulting in changes in their 

functional activity thus affecting important structural and/or enzymatic properties (Dean 

et al., 1997; Grune et al., 1997).  Oxidative reactions are in charge of mediating intra- and 

intermolecular cross-linking of peptides, proteins, and lipids (Davies, 1987; Stadtman, 

1992; Shacter et al., 1994; Grune et al., 1997).  ROS-induced protein oxidation could 

result in alterations in signal transduction pathways, cellular transport systems and/or 

enzymatic activities (Wiseman and Halliwell, 1996).   

Free Radical Mediated Skin Damage 

The skin provides the outermost barrier between the body and the environment and 

protects against environmental and chemical insults, reactive electrophiles, and oxygen-

derived radicals.  The skin is directly exposed to a variety of occupational and 

environmental hazards such as radiation, chemicals and certain drugs which are known to 

be capable of initiating free radical reactions (Halliwell, 1999, 2000; Wolf et al., 1998).  

Free radicals threaten various tissues and are involved in pathological outcomes 

particularly the development of a variety of cutaneous disorders (Miyachi et al., 1986; 

Kang et al., 2001; Oztas et al., 2003).  Oxidative stress and inflammation have been 

linked to the development of psoriasis, eczema and burns, atopic dermatitis, and contact 

dermatitis (Lontz et al., 1995; Filipe et al., 1997; Maresca et al., 1997; Kokcam and 
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Naziroglu, 1999; Pereira et al., 1999; Wolber et al., 1996; DeLuca et al., 1998; Mundt et 

al., 1999; Niwa and Iizawa, 1994; Antille et al., 2002; Miyachi et al., 1985; Sharkey et 

al., 1991; Finnen et al., 1984; Schmidt et al., 1990; Senaldi et al., 1994; Fuchs and 

Milbradt, 1994; Hirai et al., 1997; Lange et al., 1998; Somani and Babu, 1989; Camera et 

al., 1998; Willis et al., 1998; Kimura et al., 1998; Sarnstrand et al., 1999; Fuchs et al., 

2001).  

Phototoxic Skin Damage 

The occurrence of phototoxic skin reactions, e.g. contact photosensitization, drug-

induced chemotherapy and phototoxicity, porphyrias, and photosensitivity, are all well 

described events related to ROS production (Miyachi, 1987).  UVR has been shown to 

induce acute and chronic changes in skin, e.g. increased vascular permeability, sunburn 

cell formation, epidermal cell disorganization and desquamation, leukocyte infiltration, 

alterations found in lysosomes and lysosomal enzymes, cell proliferation, accelerated 

production of melanin, and an increase in size and density of melanocytes (Pathak and 

Stratton, 1968).  Ground state O2 is excitable by UVR and results in the production of a 

variety of ROS which are responsible for photochemical and photooxidative reactions 

that are able to damage cells (Cunningham et al., 1985).  Lipid peroxidation, destruction 

of antioxidant enzymes, and the increased activities of cyclooxygenase and lipoxygenase 

also have been observed following exposure to UVR (Punnonen et al., 1991). 

Atopic Dermatitis 

Atopic dermatitis is characterized by cellular infiltration of lymphocytes, monocytes, and 

eosinophils.  These inflammatory cells release a variety of bioactive substances, e.g. 

proinflammatory cytokines, chemokines and ROS, upon immunological and non-
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immunological stimulation.  Increased oxidative stress has been associated with and 

contributes to the pathophysiology of atopic dermatitis (Wolber et al., 1996; DeLuca et 

al., 1998; Mundt et al., 1999; Niwa et al., 1994; Fuchs et al., 2001; Antille et al., 2002).  

ROS production has been reported to result in increased protein kinase C (PKC) 

activation with subsequent upregulation of AP-1 and hyperproduction of 

proinflammatory cytokines (Antille et al., 2002).  Antioxidants interfere with redox-

sensitive transcription factors causing an activation and/or inhibition of AP-1 at the 

transcriptional or post-transcriptional levels (Antille et al., 2002; Briganti and Picardo, 

2003; Aggarwal et al., 2006).  Antioxidant supplementation has been proposed to 

potentially regulate the signal transduction pathways responsible for the development of 

atopic dermatitis (Antille et al., 2002; Briganti and Picardo, 2003; Aggarwal et al., 2006). 

Psoriasis 

The development of psoriasis is characterized by abnormalities in essential fatty acid 

metabolism, lymphokine secretion, free radical generation, lipid peroxidation, and 

eicosanoid metabolism.  Large amounts of superoxide have been found to be generated 

by inflammatory and other cell types in psoratic skin lesions thereby resulting in an 

upregulation of heme oxygenase-1 (HO-1) which stimulates keratinocyte proliferation 

(Hanselmann et al., 2001).  Psoriasis patients have been shown to have an accumulation 

of biomarkers of lipid peroxidation, e.g. malondialdehyde, along with reduced levels of 

low molecular weight antioxidants present in skin, e.g. β-carotene and α-tocopherol, and 

reduced activities of catalase and glutathione peroxidase (GPx) found both in plasma and 

red blood cells. This indicates the importance of the antioxidant defense system in the 

development and persistence of psoriasis (Lontz et al., 1995; Filipe et al., 1997; 
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Marescaet et al., 1997; Kokcam and Naziroglu, 1999; Pereira et al., 1999; Briganti and 

Picardo, 2003).  Therapeutic intervention using radical scavenging drugs, e.g. 

metronidazole, has been successful in the treatment of psoriasis (Ormedod et al., 2000; 

Peus et al., 2000).  

Acne  

ROS production by neutrophils, which are recruited in response to chemicals or bacteria, 

has been implicated in the irritation/destruction of the follicular wall and has been 

associated with the inflammatory progression of acne (Thiele et al., 1999).  Several 

known acne therapeutic treatments using deoxcycline hydrochloride and metronidazole 

are partially successful due to inhibition of ROS generation (Akamatsu and Horio, 1998; 

Akamatsu et al., 1990). Another widely used drug for acne treatement, benzoyl peroxide, 

has been shown to oxidize vitamin E in skin inducing lipid peroxidation.  This oxidative 

alteration of skin integrity by benzoyl peroxide increases skin permeability thereby 

facilitating the cellular uptake of the drug by dermal tissue.  Once intracellular, benzoyl 

peroxide is able reduce the level of glutathione (GSH) and stimulate expression of pro-

inflammatory cytokines and trigger production of free radicals that are essential to 

preclude bacterial growth (Valacchi et al., 2001).   

Contact Dermatitis 

The development of contact dermatitis has been associated with oxidative stress and 

inflammation (Miyachi et al., 1985; Sharkey et al., 1991; Finnen et al., 1984; Schmidt et 

al., 1990; Senaldi et al., 1994; Fuchs and Milbradt, 1994; Hirai et al., 1997; Lange et al., 

1998; Somani and Babu, 1989; Camera et al., 1998; Willis et al., 1998; Kimura et al., 

1998; Sarnstrand et al., 1999; Fuchs et al., 2001).  Contact dermatitis is a very common 
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and important condition in clinical and occupational dermatology which can be classified 

in to 2 categories: allergic contact dermatitis (ACD) and irritant contact dermatitis (ICD). 

ICD accounts for 50-80% of all skin disease cases (Fuchs et al., 2001).  ACD is a cell-

mediated immune type IV hypersensitivity reaction while ICD is a non-immunological 

inflammatory skin disease.  ACD requires pre-existing genetic susceptibility, an 

immunocompetent individual and a chemical antigen which is able to absorb 

transepidermally (Wakem and Gaspari, 2000). ICD can occur from exposure to a variety 

of industrial and in-house used chemicals.   

 

Acids, alkalis, solvents, and oxidizing agents are all among a broad class of chemicals 

that can induce ICD, while allergens necessary to induce ACD are less abundant.  Most 

skin irritants and allergens are redox inactive; however, a few of them are able to 

generate free radicals via metabolic activiation, redox cycling, and/or other activation 

mechanisms, e.g. covalent binding to cellular constituents.  Organic peroxides and 

hydroperoxides, phenols, quinones, and primary amines are some examples of oxidizing 

and oxidizable agents which are able to form free radicals (Vessey et al., 1992; Vessey 

and Lee, 1993; Iannone et al., 1993; Timmins and Davies, 1993; Kensler et al., 1995; 

Taffe et al., 1987; Athar et al., 1989; Hess et al., 1991; Thompson et al., 1995; 

Stoyanovsky et al., 1995; Stoyanovsky et al., 1996; Bogadi-Sare et al., 1997; Shvedova et 

al., 2000; Svingen et al., 1981; Daugherty and Khurana, 1985; Powis, 1989; Monks et al., 

1992; Hajarizadeh et al., 1994; Bekerecioglu et al., 1998; Chignel, 1985; Cavalieri and 

Rogan, 1985; Brennan and Schiestl, 1997; Hlavica et al., 1997).  These chemicals and 

their radicals are able to alter cell function and/or trigger release and induction of 
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endogenous chemicals in skin, e.g. histamine, components of the complement pathway, 

arachidonic acid metabolites, ROS and cytokines (Corsini and Galli, 1998). 

 

Chemical exposures can cause the production and release of inflammatory cytokines by 

resident epidermal cells, dermal fibroblasts, endothelial cells, and invading inflammatory 

cells facilitating the development of skin irritation.  Keratinocytes, representing 95% of 

epidermal cells (McKenzie and Sauder, 1990), are known to contribute to the 

development of ICD and ACD by generating and releasing pro-inflammatory cytokines 

(IL-1 α and TNF-α) and leukocyte recruitment.     

 

Antioxidants are capable of modulating the effects of skin irritation.  Application of 

substances that possess antioxidant properties such as α-hydroxyacids (Morreale and 

Livrea, 1997; Barardesca et al., 1997), ascorbate, uric acid, glutathione, and vitamin E 

(Weber et al., 1995; Thiele et al., 1995) have been shown to modulate stratum corneum 

barrier function and prevent skin irritation (Barardesca et al., 1997).  It is important to 

note that intracellular redox homeostasis is modulated by sulfur containing low molecular 

weight antioxidants particularly glutathione (Meister, 1988; Schafer and Buettner, 2001; 

Sies, 1999).   

 

Chemical irritants are able to activate NFκB via mechanisms involving ROS production 

in the skin (Allen and Tresini, 2000; Bauerle and Henkel, 1994; Sen and Packer, 1996; 

Flohe et al., 1997; Gius et al., 1999) which have been reported to subsequently trigger the 

production of IL-1, IL-6, TNF-α, and the expression of adhesion molecules expressed in 
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human endothelial cells and keratinocytes (Corsini and Galli, 1998; McKenzie and 

Sauder, 1990; Kupper, 1990).  NFκB activation has been associated with the induction of 

contact hypersensitivity while antioxidants, such as α-tocopherol and ascorbic acid, have 

been shown efficiently ameliorate the clinical manifestations of contact dermatitis 

(Miyachi et al., 1985; Sharkey et al., 1991; Finnen et al., 1984; Schmidt et al., 1990; 

Senaldi et al., 1994; Fuchs and Milbradt, 1994; Hirai et al., 1997; Lange et al., 1998; 

Somani and Babu, 1989; Camera et al., 1998; Willis et al., 1998; Kimura et al., 1998; 

Sarnstrand et al., 1999; Fuchs et al., 2001; Briganti et al., 2001; Briganti and Picardo, 

2003).  

Vitiligo 

Vitiligo is a pigmented disease of the skin which occurs due to the programmed cell 

death of melanocytes due to their inherent sensitivity to oxidative stress arising from the 

formation of melanin toxic intermediates upon UV exposure.  Vitiligo manifests itself as 

expanding depigmented lesions of the skin (LePoole et al., 1993; Jimbow et al., 2001). 

The mechanism by which vitiligo occurs is not well understood; however, the formation 

of radical intermediates formed during melanin synthesis has been implicated in the 

predisposition of melanocytes to self-destruction (Lerner, 1971).  The initial pathogenic 

event involved in melanocyte degeneration is oxidative stress (Jimbow et al., 2001).  An 

imbalance in the antioxidant system as exhibited by altered enzymatic activity of 

thioredoxin reductase, catalase (Schallreuter et al., 1991), superoxide dismutase, and 

glutathione reductase (Schallreuter et al., 1986, 1987) has been proposed to play a pivotal 

role for depigmentation of the skin of patients with vitiligo.  Consequently, it was 
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demonstrated that melanocytes from vitiligo patients are extremely sensitive to high 

doses of UVR and treatments with pro-oxidant chemicals (Jimbow et al., 2001).   

Rosacea 

Rosacea is a skin disorder which presents as central facial distribution of erythema.  The 

pathophysiology is not well understood but it is believed to occur as a result of 

neurovascular hyperreactivity, infection, UV light, and possibly numerous inflammatory 

mediators (Dahl, 2001; Millikan, 2003).  The presence of ROS has been proposed to 

contribute to the clinical outcomes of rosacea (Akamatsu et al., 1990).  ROS have been 

proposed to be a key event involved in neutrophil inflitration and damage of facial 

follicles in patients with rosacea (Miyachi et al., 1986).  The subsequent oxidative burst 

by neutrophils has been linked to the development of facial erythema observed in patients 

with rosacea (Marks, 1968).  Activation of matrix metalloproteinases (MMPs) in skin has 

been shown to occur as a result of UV-light induced ROS production.  This activation of 

MMPs increases the destruction of dermal collagen contributing to the development of 

rosacea (Kang et al., 2001).  Some of the pathophysiologic mechanisms that are involved 

in photoaging have been also implicated in the development of rosacea (Dahl, 2001; 

Marks, 1968; Neumann and Frithz, 1998). 

Carcinogenesis 

Chemical carcinogens induce various stages of cancer development via metabolic 

modifications of cellular compartments and molecular events.  Chemicals which act as 

carcinogens are classified as genotoxic or epigenetic based upon their mechanism of 

action.  Genotoxic agents directly damage DNA leading to a mutation, while epigenetic 
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chemicals act through indirect DNA damaging mechanisms.  Epigenetic agents modulate 

cell growth and death via a mechanism which is not fully understood (Valko et al., 2006).   

 

Cancer, a multistage process, can occur by the cumulative action of multiple events 

within a single cell. The development of malignant skin cancers is a multistage process 

involving 3-steps including initiation, promotion, and progression, which are mediated by 

various factors derived from environmental, biochemical, cellular, and molecular events 

(Marnett, 2000).  The initiation stage results in a permanent alteration of the cellular 

genotype (Black, 1993).  ROS can affect all stages of multistage carcinogenesis. Free 

radical production has been shown to induce DNA damage and trigger the genetic 

alterations observed in several proto-oncogenes and tumor suppressor genes affecting the 

integrity of epidermal cells by making them resistant to signals for terminal 

differentiation (Marnett, 2000).  Excessive-oxidative DNA damage could lead to 

mutation, alteration of phenotypic expression, and cell death (Taffe and Kensler, 1989).  

There is also evidence that ROS play a prominent role in skin tumor carcinogenesis 

through a secondary mechanism involving activation of pro-carcinogens, e.g. 7,12-

dimethylbenz(a)anthracene (DMBA), in skin (Quintanilla et al., 1986).   

 

Tumor promotion is the process of clonal expansion of cells containing the altered DNA 

by induction of cell proliferation and/or inhibition of apoptosis.  The cancer promotion 

stage requires the constant presence of a tumor promoter for the development of an 

identifiable focal lesion (Loft and Poulsen, 1996).  Conversion, which is the 1st stage of 

promotion, is a partially reversible step and occurs when initiated cells are shifted to a 
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state of increased promotability (Ordman et al., 1985).  Propagation, known as the 2nd 

stage of promotion, is an irreversible process.  Tumor promoters exert their effects at the 

stage of cell propagation and differentiation probably through accelerated ROS 

production (Kawanishi et al., 2001). 

 

Tumor progression is the 3rd stage during carcinogenesis and involves cellular and 

molecular changes by inducing the transition of pre-neoplastic to neoplastic lesions 

(Klaunig and Kamendulis, 2004; Marnett, 2000).  This is an irreversible process and is 

characterized by the cellular transformation from benign to malignant state involving 

genetic instability and distruption of chromosome integrity (Valko et al., 2006). 

Oxidizable compounds, e.g. benzoyl peroxide, have been reported to have an increased 

effect on the malignant conversion of skin tumors (Athar et al., 1989; Warren et al., 

1993).  Inflammation has been shown to be a critical component of tumor progression 

(Valko et al., 2006).  Free radicals produced during chronic inflammation can induce a 

number of alterations including gene mutations and post-translational modifications of 

cancer regulating proteins (Valko et al., 2006).  These alterations can lead to the 

disruption of important cellular events and processes, e.g. DNA repair, cellular 

checkpoints, differentiation and apoptosis (Hussain et al., 2003; Coussens and Werb, 

2002). 

 

Production of reactive oxygen species can occur both endogenously and exogenously 

(Trenam et al., 1992; Halliwell and Cross, 1994; Powers and Hamilton, 1999).  The 

formation of these radicals can have many adverse effects on skin constituents. Molecular 
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changes via oxidation of proteins, DNA, and lipids are capable of manifesting dermal 

toxicity and contributing to a number of pathological skin conditions, e.g. phototoxicity, 

photoaging and carcinogenesis.   

Antioxidant Network 

The skin relies on an interactive antioxidant network that is imperative to protect against 

oxidant stress induced by exposures to sunlight, pollution, and chemicals (Thiele et al., 

2000).  Intracellular antioxidants include low molecular weight scavengers of oxidizing 

species and enzymes, e.g. superoxide dismutase (SOD), catalase, and glutathione 

peroxidase (GPx), which degrade superoxide and hydroperoxides.  These antioxidant 

systems prevent the uncontrolled formation of free radicals, regulate activation of oxygen 

species, and ameliorate ROS reactions with biological constituents (Chaudiere and 

Ferrari-Iliou, 1999).  Two antioxidant systems are present in the skin environment that 

control ROS production by enzymatic and non-enzymatic mechanisms.  These 

antioxidants interact within skin thereby providing efficient protection from oxidative 

insults.   

Enzymatic Antioxidants 

The antioxidant enzymes primarily function within cells.  One of the principal 

intracellular enzymes which removes O2·- is superoxide dismutase (SOD) (McCord and 

Fridovich, 1969; Fridovich, 1974).  SOD is present in the cytosol, mitochondrial matrix, 

and is also present in the extracellular compartment bound to cellular surfaces and 

collagen.  It removes O2·- by converting it to hydrogen peroxide (H2O2) which is also 

known as a potent oxidant that is toxic to cells.   Catalase is an enzyme present in the 

peroxisomes of plants, animal cells, and aerobic bacteria (Mates et al., 1999). Catalase 

 
 

15



www.manaraa.com

detoxifies H2O2 (Levander, 1987) by converting it to H2O and O2. Glutathione peroxidase 

(GPx), specifically the selenium-dependent GPx, also converts H2O2 into water via the 

oxidation of reduced glutathione (GSH) to the oxidized form (GSSG).  Glutathione 

reductase is a flavoprotein that recycles GSH by conversting GSSG to GSH via the 

oxidation of the cofactors NADPH to NADP+ (Sipowicz et al., 1997). These enzymatic 

activities are present in higher concentration in the epidermis than in the dermis of 

rodents and humans (Shindo et al., 1994).  

Nonenzymatic Antioxidants 

Because alterations in antioxidant enzymatic activity can occur due to non-oxidative 

factors, nonenzymatic antioxidants are used as major tool for the identification of 

oxidative stress (Halliwell, 1999; Podda and Grundmann-Kollman, 2001; Gate et 

al.,1999; Kohen and Gati, 2000).  Nonenzymatic antioxidants known as low molecular 

weight antioxidants, e.g. L-ascorbic acid, uric acid, and GSH, are water-soluble and 

present in the cellular and extracellular compartments. The lipid-soluble antioxidants 

vitamin E and ubiquinol are associated with cellular and inner mitochondrial membranes.  

The epidermis has been shown to possess higher levels of nonenzymatic antioxidant 

constituents than the dermis (Gate et al., 1999; Podda and Grundmann-Kollman, 2001; 

Pinnell, 2003) 

 

The low molecular weight antioxidants function in tissues as a coordinated network 

(Podda and Grundmann-Kollman, 2001).  Generation of ROS in lipophilic compartments 

is quenched by the presence of α-tocopherol.  Oxidized tocopherol can be regenerated by 

ubiquinol or L-ascorbic acid (Kagan et al., 1992) resulting in the formation of 
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dehydroascorbic acid.  The dehydroascorbate can then be reduced by glutathione 

(Pinnell, 2003).  This mechanism is involved in the recycling of α-tocopherol at the 

expense of ascorbate and GSH (Figure 2).  

L-Ascorbic Acid 

L-ascorbic acid, otherwise known as vitamin C, is the body’s major aqueous-phase 

reductant (Colven and Pinnell, 1996; Rumsey et al., 1999) and is a major antioxidant 

present in the skin.  L-ascorbic acid is synthesized by plants (Gate et al., 1999) and 

rodents while human beings must obtain ascorbate from the diet (Nishikimi et al., 1994).  

The concentration of L-ascorbic acid in the skin of humans is 15-fold greater than 

glutathione, 200-fold greater than vitamin E, and 1000-fold greater than ubiquinol 

(Shindo et al., 1994).  Human skin has an average of 7600 nmol ascorbate/g tissue in the 

epidermis and 1300 nmol ascorbate/g tissue in the dermis (Pinnell, 2003).  

 

Ascorbate is an α-ketolactone that exists as a hydrophilic monovalent hydroxyl anion.  

Acting as an antioxidant, L-ascorbic acid donates an electron forming an ascorbyl radical.  

Ascorbyl radicals are more stable than other free radicals and are capable of acting as free 

radical scavengers.  Loss of the second electron results in the formation of 

dehydroascorbic acid which can be regenerated by dehydroascorbic acid reductase to 

ascorbate (Colven and Pinnell, 1996; Pinnell, 2003).   

 

Along with antioxidant function, the presence of l-ascorbic acid is essential for collagen 

biosynthesis, and serves as a cofactor for prolyl and lysyl hydroxylases, enzymes which 

provide molecular stability and intermolecular, cross-linking in various tissues (Kivirikko 
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and Myllya, 1985).  Decreased levels of l-ascorbic acid have been known to cause an 

inhibition of elastin biosynthesis (Davidson et al., 1997), and reduce formation of 

melanin pigment in skin by suppressing tyrosinase activity (Maeda and Fukuda, 1996).  It 

has also been demonstrated that L-ascorbic acid improves epidermal skin barrier function 

(Pasonen-Seppanen et al., 2001; Ponec et al., 1997; Savini et al., 2002).  Recent reports 

show the ability of ascorbic acid to regulate factors influencing gene expression, 

apoptosis, and other cellular function (You et al., 2000).  Ascorbate, due to its antioxidant 

ability, is able to protect against cell death triggered by a variety of stimuli.  Ascorbate is 

also believed to regulate AP-1 as well as the Fos and Jun protein superfamilies (Valko et 

al., 2006; Lopez-Lluch et al., 2001; Catani et al., 2001). 

 

Ascorbate has been shown to provide efficient protection against membrane lipid 

peroxidation via a vitamin E recycling pathway (Wefers and Sies, 1988; Retsky et al., 

1999).  It serves to regenerate oxidized vitamin E by functioning as a reducing agent 

(Pugliese, 1998; Carr and Frei, 1999; Kojo, 2004).  Ascorbate is able to react with 

superoxide and peroxyl radicals resulting in the formation of an ascorbyl radical (Beyer, 

1994; Colven and Pinnell, 1996; Pinnell, 2003).  Ascorbyl radical can be converted back 

to ascorbate via the glutathione/NADPH reaction regulated by dehydroascorbate 

reductase (Stocker et al., 1986; Weber et al., 1999).   

Vitamin E   

While humans synthesize other antioxidants, such as GSH and ubiquinol, vitamin E has 

to be received via dietary intake.  Some of the common sources of vitamin E are fresh 

vegetables, vegetable oils, cereals, and nuts (Thiele et al., 2005). Vitamin E is the body’s 
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major lipid soluble antioxidant (Packer et al., 2001, Munne-Bosch and Alegre, 2002).  It 

consists of 8 molecular forms of which 4 are tocopherols and 4 are tocotrienols.  The 

molecular structure of the forms consists of a hydrophobic prenyl tail which anchors in 

membranes.  The difference in tocopherols and tocotrienols is in the structure of the 

prenyl tails.  Tocopherols have a linear, saturated tail while tocotrienols have a nonlinear 

unsaturated tails.  Tocopherol is a 6-chromanol derivative containing a phenolic OH 

group at carbon 6 and a branched side chain with chiral C atoms at 2, 4, and 8 (Nachbar 

and Korting, 1995; Fuchs et al., 2003). Each form has an identical chromanol head with 

α-, β-, χ-, and δ-isomers dependent upon different substituents at positions 5 and 7 of the 

ring (Nachbar and Korting, 1995).  Both tocopherol and tocotrienol contain an essential 

hydroxyl group necessary for its antioxidant properties, while methyl groups have been 

shown to vary in number and position. 

 

The antioxidant activity of vitamin E in humans predominately involves α-tocopherol 

due to the presence of a specific α-tocopherol transporter protein, which selectively 

transfers α-tocopherol into lipoproteins (Azzi et al., 2000; Gohil et al., 2004). As a result, 

α-tocopherol is considered to be the most important of the isomers.  It comprises 90% of 

the tocopherols in tissue with the greatest biological activity (Goodman and Gilman, 

1990). The relative antioxidant efficiency of tocopherols in the lipid systems is 

α > β > χ > δ (Munne-Bosch and Alegre, 2002).  Tocopherols have shown greater 

antioxidant capabilities in lipid structures than tocotrienols in the epidermis of the skin 

(Packer et al., 2001; Packer and Valacci, 2002).   
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Vitamin E is one of the most important nonenzymatic, lipid-soluble antioxidant (Chow, 

1990; Furuse, 1987). The protective effect of vitamin E is due to its ability to reduce free 

radicals, e.g. oxygen-centered and/or lipid derived radicals (Valko et al., 2006).  The 

major antioxidant function of vitamin E is to prevent damage caused by these free radical 

particularly lipid peroxidation.  The role of vitamin E as an antioxidant is mediated by the 

phenolic OH group of the chromanol ring.  α-Tocopherol is incorporated into biological 

membranes and localized near polyunsaturated fatty acids of membrane phospholipids. 

Reactive oxygen species react with the double bonds of lipids resulting in the formation 

of a lipid-derived radicals.  The addition of molecular oxygen transforms the lipid radical 

into a lipid peroxyl radical.  The lipid peroxyl radical is then able to attack unsaturated 

lipids thereby resulting in the formation of additional lipid radicals and lipid 

hydroperoxide (Huang et al., 1988; Nachbar and Korting, 1995).  This radical chain 

reaction threatens the structural integrity of the membrane (Munne-Bosch and Alegre, 

2002).  Tocopherols and tocotrienols are capable of scavenging the peroxyl radical 

thereby limiting propagation of the chain reaction. The initial oxidation of tocopherol 

results in the formation of a metastable tocopheroxyl radical which can be reduced by 

ascorbate to tocopherol or react with another lipid peroxyl radical resulting in the 

formation of a tocopherol quinone (Kamal-Eldin and Appelqvist, 1996).  As a result of 

these reactions, tocopherol is able to quench two peroxyl radicals (Thiele et al., 2005).  

 

The physiologic ratio of tocopherols to polyunsaturated phospholipids is 1:1000.  As a 

result, the recycling of tocopherol is necessary in order to maintain sufficient antioxidant 

protection (Thiele et al., 2005).  Once vitamin E is oxidized, ascorbate or glutathione are 
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able to regenerate tocopherol from the tocopheroxyl radical (Packer et al., 1979).  In vitro 

studies have demonstrated that ubiquinol 10 (coenzyme Q10) has been shown to be 

capable of preventing the photo-oxidation of α-tocopherol by recycling mechanisms 

(Stoyanovsky et al., 1995).  Depletion of these water-soluble antioxidants can alter the 

antioxidant network and subsequently diminish the antioxidant function of vitamin E 

leading to impaired protection of lipid membranes as well as the lipophilic constituents of 

organs and tissues (Thiele et al., 2005).  

 

Providing the outermost defense system for the protection of the body, the stratum 

corneum is the first skin layer to encounter physical, chemical, and biological agents.  

Vitamin E plays an important and pivotal role in protecting the lipid structures of the 

stratum corneum and guarding the proteins and lipids from oxidative stress (Pinnell, 

2003).  A variety of studies investigating the efficiency of non-enzymatic antioxidants in 

the stratum corneum revealed that vitamin E is the predominant and major physiological 

antioxidant providing a sufficient skin barrier (Thiele et al., 2001). Vitamin E is 

especially abundant in the stratum corneum due to delivery via the sebum (Podda et al., 

1996; Thiele, 2001).  The epidermis of human skin has an average of 34.2 nmol/g tissue 

of α-tocopherol, while the dermis has 18.0 nmol/g tissue of α-tocopherol (Pinnell, 2003).   

Glutathione   

Glutathione (GSH) is water-soluble and one of the body’s major sulfur-containing 

antioxidants.  GSH synthesis has been shown to be activated by oxidants.  GSH and its 

precursor, N-acetyl-cysteine (NAC), have been shown to inhibit the production and 

release of the inflammatory mediators including TNF (Peristeris et al., 1992; Zimmerman 
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et al., 1989; Ghezzi et al., 2005). The GSH system is one of the body’s first lines of 

defense against peroxidation.  The GSH system includes glutathione peroxidase, 

glutathione reductase, and glutathione transferase.  Glutathione peroxidase (GPx) acts to 

detoxify H2O2 (H2O2 + GPx + GSH  GSSG + H2O) prior to catalase involvement; 

however, in some cases catalase is necessary to provide sufficient removal of H2O2 

(Mates et al., 1999; Valko et al., 2006).   

 

GSH refers to the reduced form of GSH.  GSH is a tripeptide γ-L-glutamyl-L-cysteinyl-

L-glycine and is the major nonprotein thiol in the body.  GSH does not easily enter into 

cells, therefore, intracellular production of GSH occurs as a result of synthesis.  Three 

amino acids, L-glutamine, L-cysteine, and L-glycine, are necessary for the assembly of 

GSH by the 2 enzymes: γ-glutamylcysteine synthetase, and glutathione synthase (Gate et 

al., 1999).   

 

The major protective roles of GSH against oxidative stress within the tissue are that: (1) 

GSH is a cofactor for several detoxifying enzymes such as GPx and glutathione 

transferase; (2) it participates in amino acid transport through the plasma membrane; (3) 

GSH scavenges hydroxy radicals directly, detoxifies H2O2 and lipid peroxide by 

glutathione peroxidase; (4) GSH is able to regenerate vitamin E and C to their active 

reduced forms (Masella et al., 2005).     

 

GSH has been known to play an important role in xenobiotic detoxification by 

conjugation facilitated by glutathione-S-transferase.  This reaction increases the 
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hydrophilic properties of xenobiotics thereby favoring elimination of the latter from the 

body (Gate et al., 1999).  As a result of its role in xenobiotic transformation and 

antioxidant capabilities, GSH is found in large quantities in organs which are exposed to 

toxins including the kidney, liver, and lungs (De Leve and Kaplowitz, 1991).  GSH plays 

a major role in protein and DNA synthesis, amino acid transport, and cellular 

detoxification (Gate et al., 1999).   

 

GSH is an important quencher of free radicals and is able to donate an electron or a 

hydrogen atom via an oxidation-reduction pathway.  It is able to scavenge hydroxyl 

radicals and singlet oxygen.  The reaction between GSH and hydroxyl radical results in 

the formation of thiyl radicals, GS·.  These radicals are less reactive than hydroxyl 

radicals and are able to react with ferrous iron.  Glutathione thiyl radicals are able to 

combine into a disulfide (GSSG).  Glutathione disulfide must be reduced again to form 

GSH (GSSG + glutathione reductase + NADPH  2 GSH + NADP+) to serve as an H 

donor. 

 

GSH has also been shown to protect the cells against apoptosis.  The protection is 

provided by a multifactorial mechanism involving detoxification and modulation of 

cellular redox state via the regulation of redox-sensitive cell signaling pathways and the 

interaction of pro- and anti-apoptotic signals (Masella et al., 2005).   

 

Within the skin, GSH is mostly present in the epidermis with a relatively small amount 

formed in the dermis (Tyrell and Pidoux, 1986).  The stratum corneum contains fewer 
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thiols compared to the nonkeratinized lower layers of the epidermis.  Under normal 

conditions, the GSH/GSSG ratio in the cytosol is 1000:30 (Hwang et al., 1992; Ghezzi et 

al., 2005).  A large ratio of GSH/GSSG indicates more GSH than GSSG; while, a small 

GSH/GSSG ratio indicates that GSH has been oxidized to GSSG during oxidative 

metabolism.  The human epidermis contains on average 480 nmol GSH/g tissue while the 

dermis has 84 nmol GSH/g tissue (Pinnell, 2003). 

 

The nonenzymatic antioxidants within skin tissues work together forming an antioxidant 

network which is an important mechanism of prevention of free radical oxidative tissue 

damage.  During oxidative stress, ROS are reduced by α-tocopherol thereby resulting in 

the formation of a tocopheroxyl radical.  The oxidized tocopheroxyl radical is then be 

regenerated by L-ascorbic acid to form dehydroascorbate.  The dehydroascorbate can 

then be reduced or recycled by glutathione (Pinnell, 2003).  The overproduction of ROS 

and other free radicals are able to overwhelm the antioxidant network and subsequently 

increase the susceptibility of organs and tissues to the development of oxidative stress 

(Figure 2). 

 
The skin is continuously exposed to a variety of physical and chemical agents, e.g. 

ultraviolet radiation, phenolic compounds and organic peroxides of occupational and 

environmental origin.  Skin contact with chemicals during manufacturing is considered to 

be the major route of exposure.  Toxic outcomes of exposure can lead to the development 

of a variety of skin disorders such as rashes, burns, inflammation, irritant and allergic 

dermatitis, and cancer promotion (Ames et al., 1975; Bracher et al., 1990).  In most cases, 
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the underlying mechanism by which these chemicals cause dermal toxicity is not well 

understood. 

Cumene Hydroperoxide 

Cumene hydroperoxide (Cum-OOH) is produced by the oxidation of cumene with air in 

the presence of aqueous sodium bicarbonate acting as a catalyst.  The production occurs 

at ~130ºC (Lewis, 1993).  Approximately 1.1 million pounds of Cum-OOH are produced 

in the United States, while 7 billion pounds are consumed yearly indicating that the 

majority used in the US is imported (Lewis, 1993).  The majority (95%) of the Cum-

OOH produced in the US is from the oxidation of cumene.  This cumene is then cleaved 

to form acetone and phenol (Grayson, 1985).  It is also used as a catalyst for rapid 

polymerization, as a curing agent for unsaturated polyester resins and as an initiator for 

the polymerization of styrene and acrylic monomers, and a chemical intermediate for the 

cross-linking agent, e.g. dicumyl peroxide (Lewis, 1993).   

 

Exposure to Cum-OOH can take place in occupational or environmental settings.  

Workplace exposures to Cum-OOH can occur through contact with emissions during its 

use in the production of acetone and phenol (Grayson, 1985; Lewis, 1993).  Cum-OOH 

may be released into the environment by industrial discharges and spills, and as a by-

product of fuel oil slicks exposed to UV light.  Cumene can react with alkylperoxy 

radicals and oxygen in natural waters to form Cum-OOH which is easily decomposed by 

UV light. 
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Dermal exposure to organic peroxides and hydroperoxides such as Cum-OOH has been 

shown to cause a delayed reaction in skin resulting in severe erythema, edema and 

vesiculation (Floyd and Stokinger, 1958).  Little data exist on the specific effects of 

dermal exposure to Cum-OOH in humans.  Dermal exposure can result in a number of 

toxic outcomes such as allergic and irritant contact dermatitis, rash, defattening of the 

dermis and hair loss, burns, and epidermal hyperplasia (Hathaway et al., 1996; Adams, 

1999).  Animals dermally exposed to Cum-OOH exhibited strong irritation (Eastman 

Kodak, 1964), skin necrosis, lethargy, hyperemia, and weight loss (Dow Chemical, 

1952).   

 

Exposure to Cum-OOH can also cause cytotoxic effects such as intracellular oxidative 

stress and cellular necrosis (Persoon-Rothert et al., 1992).  Some cells have exhibited a 

physiological resistance to Cum-OOH due to the induction of antioxidant enzymes such 

as SOD, GPx, and glutathione reductase.  The addition of free radical scavengers results 

in decreased cytotoxicity due to inhibition of lipid peroxidation (Munkres and Colvin, 

1976).  Cum-OOH is believed to be genotoxic due to its ablility to induce DNA damage 

and mutations.  Cum-OOH exposure in vitro is capable of inducing DNA single strand 

breaks (Cohen et al., 1984).  The addition of the antioxidant uric acid prevents DNA 

damage indicating that the formation of hydroperoxyl radicals were genotoxic (Cohen et 

al., 1984).  

 

Normal human epidermal keratinocytes are able to metabolize organic peroxides such as 

Cum-OOH resulting in the formation of methyl radicals (Iannone et al., 1993).  
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Subsequent studies showed that Cum-OOH induced the formation of 2 radical species in 

keratinocytes thus providing evidence that dermal cells are able to metabolize cumene 

hydroperoxide into oxygen and carbon centered radicals (Athar et al., 1989; Kensler et 

al., 1995; Taffe et al., 1987). Topical application of Cum-OOH to murine skin flaps 

resulted the production of radicals which are then able to interact with ascorbate in the 

viable cells of the epidermis or dermis (Timmins and Davies, 1993).  These radicals are 

then able to undergo addition, hydrogen-abstraction, or substitution reactions and cause 

damage and/or modification of proteins, DNA and lipids (Kensler, 1989; Trush and 

Kensler, 1991; Kensler et al., 1995).  This radical production and resulting oxidative 

stress indicated a possibility for Cum-OOH as a potential promoter (Athar, 1989; Trush 

and Kensler, 1991).  

Phenol 

Phenol (PhOH) ranks in the top 50 in production volumes for chemicals produced in the 

United States.  It is used in a variety of manufacturing processes and products.  The most 

common use of PhOH is as an intermediate in the production of phenolic resins.  It is also 

used for the manufacturing of nylon and synthetic fibers and bisphenol A.   PhOH is also 

present within a wide variety of consumer products such as ointments, ear and nose 

drops, cold sore creams, mouthwashes, analgesic rubs, throat lozenges, and antiseptic 

lotions.  PhOH is also a major metabolite of benzene (Subrahmanyam et al., 1991).  It is a 

colorless to white solid man-made compound, but when found in commercial products it 

is a liquid (ATSDR, 1997).     
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An estimated 584,000 people are exposed to PhOH at work annually.  In the workplace, 

exposure to PhOH can occur by breathing contaminated air and via contact with the skin.  

Skin contact during manufacturing is considered the major route of exposure (ACGIH, 

1991; ATSDR, 1997).  Dermal exposure to phenolic compounds is known to cause skin 

rashes, burns and ulceration, dermal inflammation and necrosis, irritant and allergic 

contact dermatitis, eczematous “black-spot” dermatitis, leukoderma, and cancer 

promotion (Ames et al., 1975; Bracher et al., 1990) 

 

Dermal contact allows for PhOH to easily penetrate the skin and enter the body.  The 

amount of PhOH entering the body is dependent upon the concentration of PhOH, the 

length of time of skin contact, and the area of exposed skin.  A large skin area exposed to 

a diluted concentration of area of will have a greater absorbed concentration than a 

smaller area of skin exposed to an equal PhOH concentration of the same volume. Short-

term exposure of PhOH to the skin of animals caused blister and burn formation.  Death 

has also been observed following dermal exposure to PhOH (ATSDR, 1997).   

   

Topical application of PhOH directly affects the skin by inducing inflammation and 

tissue necrosis (Horch et al., 1994; Merliss, 1972; Trupmann and Ellenby, 1979).  Severe 

edema, erythema, and necrosis occur as a result of application of PhOH (100 mg/kg; 

Brown et al., 1975 or 107.1 mg/kg; Conning and Hayes, 1970).  Murine studies have 

been done to determine the dose-response and time-course of skin irritation and 

inflammation (Patrick et al., 1985). Application of 12 mg/cm2/kg PhOH has been shown 

to induce swelling of the ear pinna following 1-hour exposure.  Application of 18 
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mg/cm2/kg resulted in a persistent inflammation which lasted 6 weeks (Patrick et al., 

1985).  The severity of PhOH-induced skin irritation increases in a dose-dependent 

fashion.   

 

Measurements have also been done in humans to assess the absorption of PhOH through 

the skin.  The percutaneous absorption (mg PhOH absorbed through the skin per hour/ 

mg PhOH per m3 of air) of PhOH was determined to be equivalent of 0.35 m3/hour 

(Piotrowski, 1971).  PhOH easily absorbs through the skin where it is rapidly excreted in 

the urine as free PhOH or conjugates within 24 hours (Piotrowski, 1971). 

 

The skin is considered the primary route of entry for occupational exposure to PhOH 

(ACGIH 1991).  PhOH and phenolic compounds are known to cause a variety of 

cytotoxic and genotoxic effects in skin (Adam, 1980; Kensler et al., 1995; McCartney, 

1996; Toro et al., 1996; Shvedova et al., 2000).  Subtoxic concentrations have been 

shown to cause oxidative stress in normal human keratinocytes (Shvedova et al., 2000).  

The observed oxidative stress and possibly the resulting toxicity of PhOH are most likely 

due to its ability to form oxygen radicals (Shvedova et al., 2000).   

 

PhOH is a redox-cycling aryl compound (Stoyanovsky et al., 1995) which provides a 

good substrate for peroxidase (Hewson and Dunford, 1976; Dunford, 1995).  The one-

electron oxidation of PhOH and phenolic compounds by oxidative enzymes, e.g. 

peroxidase, prostaglandin synthetase and tyrosinase, leads to the formation of phenoxyl 

radical intermediates (Dunford and Adeniran, 1986; Sakurada et al., 1990; Einstein et al., 
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1992).  These phenoxyl radicals are able to be reduced by glutathione and other 

antioxidants thus regenerating the phenolic compound (Ross et al., 1985; Subrahmanyam 

and O’Brien, 1985; Schreiber et al., 1989). There is limited evidence to support the 

redox-cycling of PhOHs in vitro or in vivo.  An in vitro study using HL-60 lymphoblast 

cells found intracellular redox cycling of PhOH-induced severe oxidative stress 

(Goldman et al., 1999; Day et al., 1999; Subrahmanyam et al., 1991).  PhOH redox-

cycling and its contribution to oxidative stress and injury are important factors facilitating 

the PhOH-induced dermal toxicity.  

Ultraviolet Light 

Solar radiation is an important factor triggering skin damage.  The skin is extremely 

susceptible to UV radiation.  Overexposure to UV light has been associated with the 

manifestation of a variety of skin disease, e.g. premature aging and carcinogenesis 

(Davies and Forbes, 1986; Jurkiewicz and Buettner, 1994).  Cutaneous melanoma has 

been shown to increase in incidence after chronic exposure to sunlight (MacKie and 

Rycroft, 1988) with approximately 62,190 new cases of melanoma diagnosed yearly 

(ACS, 2006).  From 1973 to 2006, there has been a 50% increase in the mortality rate for 

melanoma (ACS, 2006).  There is an inverse correlation between latitude and sun 

exposure as well as time of day and the development of melanoma incidence (Kvam and 

Dahle, 2003).  At noon during summer during which the maximal UVR is reaching the 

earth, the minimal edema dose (MED) can vary from 250 mW/m2 at 20ºN latitude to 125 

mW/m2 at 60ºN latitude (NASD, 1997).  Although sunburn reactions are widely studied, 

the mechanisms responsible for skin damage are not fully explored (Fuchs and Kern, 

1998). 
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The solar radiation reaching the earth’s surface consists mainly of ultraviolet A (320-400 

nm) and ultraviolet B radiation (290-320 nm) with over 95% represented by UVA 

(Sander et al., 2002).  Both UVA and UVB are able to induce photo-oxidative stress, skin 

injury and premature aging (Gasparro, 2000).  The damaging effects of UV radiation on 

the skin manifest themselves through the generation of free radical species.  ROS-

mediated UV damage has been reported to cause DNA, protein, and lipid modifications 

(Beehler et al., 1992; Ogura et al., 1991).  UV exposure has been shown to induce 

expression of surface lectins (Condaminet et al., 1997), and the release of inflammatory 

cytokines in a squamous carcinoma keratinocyte cell line (Leverkus et al., 1998).  

 

The generation of reactive oxygen species and subsequent oxidative stress are the key 

mechanisms of phototoxicity due to UVA exposure (Gasparro, 2000).    UV-initiated 

ROS production has been detected in human skin cells (Peus et al., 1998; Gniadecki et 

al., 2000; Peus and Pittelkow, 2001), skin homogenates (Nishi et al., 1991), and skin 

flaps ex vivo (Jurkiewicz and Buettner, 1994; Yasui and Sakurai, 2000; Herrling et al., 

2003).     

 

Antioxidants play an important role in modulating the effects of UVA radiation (Kvam 

and Dahle, 2003).  Exposure to UVA has been shown to decrease antioxidant levels 

(Fuchs et al., 1989), inactivate antioxidant enzymes (Shindo et al., 1993), and increase 

lipid peroxidation found in skin homogenates (Ogura et al., 1991).  Depletion of GSH in 

fibroblasts is strongly associated with increased susceptibility to UVA (Tyrrell and 
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Pidoux, 1986). Increased lipid peroxidation was found in melanocytes following 

exposure to UVA (Kvam and Dahle, 2003).  Excessive UVA exposure has also been 

shown to induce epidermal tumor formation (Ananthaswamy and Pierceall, 1990). 

 

Depletion of the stratospheric ozone layer has increased the amount of ultraviolet B 

radiation reaching the earth’s surface (Noonan et al., 2003).  DNA absorbs light 

maximally from 245-290 nm which is in the UVB and UVC regions of the spectrum.  

Under normal conditions, the outer cornified layers of the skin are efficiently capable 

blocking UVC penetration and thus protecting sensitive proliferating basal cells of the 

epidermis.  UVB is more prevalent in sunlight and is able to penetrate more deeply into 

the skin.  As a result, UVB radiation is able to directly damage DNA by forming 

cyclobutane pyrimidine dimers (Brash et al., 1991; Kress et al., 1992; Sage, 1993; 

Anderson and Parrish, 1981; Biesalski and Obermueller-Jevic, 2001). This direct 

interaction of UVB and DNA is of principal importance in the cytotoxic, mutagenic, and 

carcinogenic effects of ultraviolet radiation (Ananthaswamy and Pierceall, 1990; Brash et 

al.,1991; Kress et al., 1992; Sage, 1993; Doniger et al., 1981).    

 

UVB has been shown to initiate immunosuppression in humans (Hershey et al., 1983; 

Kelly et al., 2000) and animals (Fisher and Kripke, 1977; De Fabo and Kripke, 1979, 

1980).  This UV-induced immunosuppression contributes to the development of skin 

cancer (Fisher and Kripke, 1977, 1982; De Fabo and Kripke, 1979, 1980). 
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Humans are exposed to UVA and UVB radiation.  UVA radiation exerts its deleterious 

effects via the formation of free radicals and oxidative stress.  UVB is able to interact 

with DNA directly contributing to its mutagenic and carcinogenic potential.  The 

combined effects of UVA/UVB exposure can trigger a cascade of events initiating the 

development of skin disorders including phototoxicity, photo-aging and premature aging, 

and skin cancer.   

Project Goals and Aims 

The oxidative mechanism and dermal toxicity caused by chemical and environmental 

exposures in vivo is not clearly defined.  This project was designed to determine whether 

chemical and physical agents are able to induce skin damage via an oxidative mechanism.  

The central hypothesis of this work is that dermal exposure to chemical and/or 

environmental factors triggers the formation of free radicals, which are able to induce an 

antioxidant imbalance, oxidative stress, and inflammation that could affect skin integrity.  

Excessive inflammatory-based oxidative modification of the major skin constituents 

following long-term exposure could trigger redox-sensitive cell-signaling pathways via 

activation protein 1 (AP-1) expression thereby causing the development of skin cancer.  

The specific aims of the project are: (1) To study the mechanisms of phenol (PhOH)-

induced oxidative injury in skin of animals with normal and reduced antioxidant milieu; 

(2) To assess the role of the antioxidant defense system of the skin of young and old mice 

exposed to cumene hydroperoxide (Cum-OOH); (3) To investigate the role of oxidative 

stress and the activation of AP-1 protein in the development of skin cancer; (4) To study 

the mechanisms of simulated solar light (SSL) induced skin injury with respect to 

antioxidant imbalance, oxidative damage of DNA, protein, and lipids. 
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Figure 1.  The Structure of the Skin. 
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Figure 2. The Antioxidant Network of the Skin.
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STUDY 1: PHENOL-INDUCED IN VIVO OXIDATIVE STRESS IN SKIN: 
EVIDENCE FOR ENHANCED FREE RADICAL GENERATION, THIOL 

OXIDATION AND ANTIOXIDANT DEPLETION. 
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Abstract 

A variety of phenolic compounds are utilized in industry (e.g., for production of phenol 

(PhOH)-formaldehyde resins, paints and lacquers, cosmetics and pharmaceuticals). They 

can be toxic to skin causing rash, dermal inflammation, contact dermatitis, 

depigmentation, and cancer promotion. The biochemical mechanisms for dermal toxicity 

of phenolic compounds are not well understood. We hypothesized that enzymatic one-

electron oxidation of PhOH compounds, resulting in generation of phenoxyl radicals, 

may be an important contributor to dermal toxicity by stimulating the induction and 

release of inflammatory mediators. To test this hypothesis, we 1) monitored in vivo the 

formation of α-phenyl-N-tert-butylnitrone (PBN)-spin-trapped radical adducts by ESR 

spectroscopy, 2) measured glutathione (GSH), protein thiols, vitamin E and total 

antioxidant reserves in skin of B6C3F1 mice topically treated with PhOH, and 3) 

compared the responses with those produced by PhOH in mice with diminished levels of 

GSH. We found that dermal exposure to PhOH (3.5 mmol/kg, 100µl on the shaved back, 

for 30 min) caused oxidation of GSH and protein thiols and decreased vitamin E and total 

antioxidant reserves in skin. The magnitude of the PhOH -induced generation of PBN-

spin-trapped radical adducts in skin of mice with diminished levels of GSH (pre-treated 

with 1,3-bis(2-chloroethyl)-1-nitrosourea, BCNU, an inhibitor of glutathione reductase or 

L-buthione-[S,R]-sulfoximine, BSO, an inhibitor of γ-glutamylcysteine synthetase) was 

markedly higher compared to radical generation in mice treated with PhOH alone. 

Epidermal mouse cells exposed to phenolic compounds showed the induction of early 

inflammatory response mediators, such as prostaglandin E2 and IL-1β. Since dermal 

exposure to PhOH produced ESR-detectable PBN spin-trapped signals of lipid-derived 
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radicals, we conclude that redox-cycling of a one-electron oxidation product of PhOH, its 

phenoxyl radical, is involved in oxidative stress and dermal toxicity in vivo. 
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Introduction 

Occupational exposure to phenol and phenolic compounds is estimated to affect over a 

half million people in the United States annually (ATSDR, 1997).  The major route of 

exposure is through skin contact (ACGIH, 1991) during production of phenol-

formaldehyde resins, paints and lacquers, cosmetics, and pharmaceuticals.  This exposure 

to phenolic compounds is known to cause skin rashes, burns, ulceration, dermal 

inflammation, necrosis, irritant and allergic contact dermatitis, eczematous black-spot 

dermatitis and leukoderma, and is believed to play a role in cancer promotion.  The 

mechanism underlying the toxic effects of phenol is unknown.  

 

The cytotoxic and genotoxic effects which result from occupational exposure to phenol 

may be due to the one-electron oxidation of phenolic compounds to free radical 

intermediates known as phenoxyl radicals (Bogadi-Sare et al., 1997; Chen and Eastmond, 

1995; Corbett et al., 1992; Hess et al., 1991; Hiramoto et al., 1998; Paolini et al., 1998; 

Thompson et al., 1995; Tuo et al., 1998). Radical generation may be an important 

contributor to the dermal toxicity of phenolic compounds.  Enzymes expressed in the 

skin, such as prostaglandin synthase, lipoxygenase, and tyrosinase (Bickers, 1980; Pnece 

and Neylor, 1990; Punnonen et al., 1991; Schmidt and Cheng, 1992; Shindo et al., 1994; 

Applegate et al., 1998), may provide a favorable redox environment for the oxidation of 

phenolic compounds.  We hypothesize that phenoxyl radicals, formed by the enzymatic 

metabolism of phenolic compounds, trigger free radical cascades thereby inducing 

oxidative stress and antioxidant depletion and causing an inflammatory response in skin. 
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Reactive oxygen species (ROS) play an important role in the initiation and progression of 

many conditions where inflammatory mediators are implicated (Alder et al., 1999; Keane 

and Strieter, 2002).  The presence of ROS causes an upregulation in the release and 

production of various pro-inflammatory mediators, such as IL-1, IL-6, IL-8, TNF-α, 

leukotrienes and prostaglandins, which may be responsible for the inflammation seen 

following exposure to an irritant chemical such as phenol (Luger and Schwarz, 1990).  

The release of such inflammatory mediators stimulates the production of other cytokines 

and further amplifies the inflammatory response (Effendy et al., 2000).   

 

Glutathione (GSH) is involved in maintaining normal intracellular redox status and in 

regulating the cellular defenses and controlling oxidative stress (Meister, 1988; Schafer 

and Buettner, 2001; Sies, 1999).  GSH directly scavenges ROS, and the loss of GSH is 

associated with an augmented pro-inflammatory state (Haddad, 2002).  Depletion of GSH 

upregulates ROS and results in enhanced cytokine secretion (Gossett et al., 1999). 

Antioxidants prevent cytokine production via the reduction of intracellular thiols (Haddad 

et al., 2001; Hudson, 2001; Napoli and Lerman, 2001; Petroff et al., 2001).   

 

Exposure of normal human epidermal keratinocytes (NHEK) to a variety of phenolic 

compounds causes oxidative stress and cytotoxicity (Shvedova et al., 2000). Cytotoxicity 

of studied phenols has been shown to correlate with GSH loss. To study the role of 

glutathione in the redox-cycling of phenol and inflammation in skin in vivo, we used 1,3-

bis(chloroethyl)-1-nitrosourea (BCNU, an inhibitor of glutathione reductase) and L-

buthione-[S,R]-sulfoximine (BSO, an inhibitor of γ-glutamylcysteine synthetase) to 
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decrease basal GSH levels. In particular, we determined: 1) whether BSO or BCNU 

induced accelerated oxidative stress and augmented depletion of antioxidants in the skin 

of B6C3F1 mice after topical exposure with phenol, 2) whether topical exposure of 

B6C3F1 mice to PhOH induced formation of free radical adducts assessed ex vivo by 

ESR spectroscopy in the skin of animals with normal and reduced levels of GSH 

achieved by pre-treatment with BSO or BCNU, and 3) whether cyclooxygenase (COX-2) 

activation is involved in the generation of inflammatory mediators following PhOH or 

BSO/PhOH exposure in murine epidermal JB6 cells. 

Materials and Methods 

Chemicals 

Fatty acid-free human serum albumin (hSA), luminol, sodium dodecyl sulfate (SDS), 

2,2’-dipyridyl (2,2’-DP), α-phenyl-N-tert-butylnitrone (PBN), phenol (PhOH), 

glutathione (GSH), 1,3-bis(chloroethyl)-1-nitrosourea (BCNU), and L-buthione-[S,R]-

sulfoximine (BSO) were purchased from Sigma Chemicals Co. (St. Louis, MO).  

Methanol, ethanol, chloroform, hexane and water (HPLC grade) were purchased from 

Aldrich Chemical Co. (Milwaukee, WI).  Thio-Glo-1 was obtained from Covalent Inc. 

(Wobum, MA).  2,2’-Azobis(2-aminodinopropane)-dihydrochloride (AAPH) was 

purchased from Wako Chemicals USA, Inc. (Richmond, VA).  Prostaglandin E2 ELISA 

Kits were obtained from Cayman Chemical Co. (Ann Arbor, MI).  ELISA Kits were 

obtained from BioSource International (Camarillo, CA). 

Animals 

B6C3F1 mice (3-4 weeks; 16-18 g in weight) were obtained from Harlan Lab Animals 

(Indianapolis, IN).  Each mouse was housed in an individual ventilated cage with Alpha-
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Dri cellulose chips and hardwood Beta-chips for bedding and provided HEPA-filtered air 

under controlled environmental conditions in an Association for Assessment and 

Accreditation of Laboratory Animal Care (AAALAC) accredited, specific pathogen-free 

facility.  Food and water were provided ad libitum.  All animal procedures were 

performed in accordance with an approved Animal Care and Use Committee (ACUC) 

protocol.   

Animal Exposures 

B6C3F1 mice were injected with 1,3-bis(chloroethyl)-1-nitrosourea (BCNU), or L-

buthione-[S,R]-sulfoximine (BSO) to achieve a 30% decrease in the level of glutathione 

in the skin.   BCNU (40 mg/kg, 100 µl) was injected intraperitoneally (i/p) 3 hours prior 

to phenol exposure.  BSO (2 mmol/kg, 100 µl) was injected i/p 2 times within 21 hours.  

Following GSH depletion, the dorsal area (1.5 X 2.0 cm2) of the mouse skin, which had 

been shaved 24 hours prior to exposure, was topically exposed to PhOH (3.5 mmol/kg, 

100 µl).  Thirty minutes following PhOH exposure, mice were sacrificed by inhalation of 

excess carbon dioxide.   

Skin Collections and Preparation of Homogenates 

Skin flaps from the intrascapular area of the back of mouse were excised and samples 

taken for ESR studies, histopathology and biochemical analysis.  Skin for biochemical 

analysis was immediately frozen at –80° C until processed.  The skin homogenates were 

prepared from frozen tissues with ice-cold phosphate-buffered saline (PBS, 7.4) using a 

tissue tearer (model 985-370, Biospec Products, Inc., Racine, WI). 

 

 
 

42



www.manaraa.com

Fluorescence Assay of Glutathione (GSH) and Protein Sulfhydryls 

Total thiol concentration in homogenates of skin was determined using ThioGlo-1, a 

maleimide reagent which produces a highly fluorescent product upon its reaction with 

sulfhydryl groups (Shvedova et al., 2000).  A standard curve was established by addition 

of GSH (0.04 – 2.0 µM) to 0.1 M phosphate buffer (pH 7.4) containing 10 µM ThioGlo-

1.  GSH content was estimated by an immediate fluorescence response registered upon 

addition of ThioGlo-1 to tissue homogenates.  Total protein sulfhydryls were determined 

from the additional fluorescence response after the addition of SDS (4 mM) to the same 

homogenate.  A Shimadzu spectrofluorometer RF-5000 U (Shimadzu, Japan) was 

employed in the assay: excitation 388 nm and emission 500 nm.  The data were acquired 

using an excitation slit of 1.5 nm and an emission slit of 5 nm.  The wavelengths were 

exported from the spectrofluorometer using RF-5000 U PC Personal Fluorescence 

software (Shimadzu, Japan).   

Determination of Skin Bi-fold Thickness as an Inflammatory Biomarker 

To assess the extent of PhOH induced edema in mouse skin following treatment, a dial 

caliper (The Dyer Company, Lancaster, PA) was used to measure the skin bi-fold 

thickness.  Changes in skin bi-fold thickness were determined by the measurements of 3 

random locations within the area of exposure per mouse.  Edema formation was 

expressed as net increase in skin bi-fold thickness between experimental (PhOH) and 

control groups. 

ESR Study of Generation of Free Radicals in Skin   

The skin used to assess the free radical generation was obtained from the intrascapular 

region of the mouse back.  Equal amounts of the skin (1.5 X 2.0 cm) were obtained from 
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the control and experimentally treated animals. Following BCNU or BSO exposure, the 

mice were injected subcutaneously in the dorsal lumbar area with the spin-trap α-phenyl-

N-tert-butylnitrone (PBN; 1 mmol/kg, 100 µL) dissolved in saline.  Ten minutes 

following injection with PBN, the intrascapular area of the back was painted with saline 

(100 µL) or phenol (3.5 mmol/kg, 100µl).  Thirty minutes following phenol exposure, the 

animals were sacrificed and skin flaps were collected.  Samples were minced and 

homogenized with 15 mL chloroform/methanol (2:1 mixture) and 1.0 mL 2,2’-dipyridyl 

(30 mM) to prevent oxidation during lipid extraction (Kagan and Gorbunov, 1998).  The 

skin homogenates were then centrifuged (2000 rpm, 10 min, 4° C) and the chloroform 

layer was collected.  The lipid extracts from the skin were dried under nitrogen.  One mL 

of lipid extracts from the mouse skin was used to detect spin-trapped free radicals.  ESR 

spectra were recorded immediately at room temperature using a quartz flat cell and a 

Bruker EMX with a Super High Q cavity.  Instrumental settings were as follows: 

microwave power, 20 mW; modulation amplitude, 1.0 G; conversion time, 0.6 s; time 

constant, 1.3 s. Spectra were recorded on an IBM-compatible computer interfaced to the 

spectrometer.  The determination of the coupling constants was done in 

chloroform/methanol.  Hyperfine coupling constants were determined using the Win-Sim 

program of the NIEHS public EPR software tools package, which is available over the 

Internet (http://EPR.niehs.nih.gov/).  The program was allowed to systematically vary the 

hydrogen and nitrogen hyperfine coupling constants and the relative concentrations of 

each species to achieve the best fit to the experimental spectra. 
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HPLC Assay of α-Tocopherol   

Extracts of α-tocopherol from skin homogenates were prepared using a procedure 

described by Lang et al. (1986).  A Waters HPLC system with a 717 auto sampler, a 

Hewlett Packard ODS Hypersil column (5 mm; 200 X 4.6 mm), a Waters 600 Controller 

pump, and a 474 fluorescence detector was used to measure α-tocopherol in the samples.  

The wavelengths employed in the assay were 292 nm (excitation) and 324 nm (emission).  

Both the excitation and emission slits were 5 nm.  Eluent was CH3OH with a flow rate of 

1 ml/min.  Under these conditions, the retention time for α-tocopherol was 8.2 min.  The 

minimum detection level for α-tocopherol in the samples was 0.1 pmol/ mg of protein.  

The data acquired were exported  from the Waters 474 detector using Millennium 2000 

software (Waters Associates, Milford, MA). 

Chemiluminescence Measurements of Total Antioxidant Reserve   

A water-soluble azo-initiator, 2,2’-azobis(2-aminodinopropane)-dihydrochloride 

(AAPH), was used to produce peroxyl radicals (Niki, 1990).  Oxidation of luminol by 

AAPH-derived peroxyl radicals was assayed by the chemiluminescence response.  A 

delay in the chemiluminescence response caused by the interaction of endogenous 

antioxidants with AAPH-derived peroxyl radicals was observed upon addition of 

homogenates.  Based on the known rate of peroxyl radical generation by AAPH, the 

amount of peroxyl radicals scavenged by endogenous antioxidants was evaluated.  The 

incubation medium contained 0.1 M phophate buffer (pH 7.4) at 37°C, AAPH (50 mM), 

and luminol (0.4mM).  The reaction was started by the addition of AAPH.  Luminescent 

analyzer 633 (Coral Biomedical, Inc., San Diego, CA) was employed for determination. 
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Cell Culture   

JB6 murine epidermal cells were cultured in Eagle’s MEM containing 5% fetal calf 

serum and 2 mM L-glutamine.  The cells were grown at 37°C with 5% CO2.  Cells were 

grown in 96-well plates or 75 cm2 tissue culture flasks for 18 hours prior to exposure to 

allow for adherence.  Cells were exposed to BSO (10 µM) for 4 hours.  After 4 hours, the 

media was changed and the cells were exposed to phenol (15 mM) and BSO for ½, 1, 2, 

or 18 hours.  At the completion of the experiment, cellular supernatant was stored for 

ELISA analysis while cells were suspended in PBS.  All samples were frozen at -80°C 

until analyzed.                                                                                                                                                       

Pro-inflammatory cytokine protein quantification  

Enzyme Linked Immunosorbent Assay (ELISA) was utilized to measure the pro-

inflammatory mediators, interleukin-1β (IL-1β) and prostaglandin E2 in supernatants 

from JB6 cells exposed to phenol. The concentration of IL-1β in cultured supernatants 

was measured using a commercially available ELISA immunoassay kit (Biosource 

International, Camarillo, CA) which is sensitive for IL-1β concentrations ranging from 

7.8 pg/ml to 1000 pg/ml.  Concentration of prostaglandin E2 in cultured supernatants was 

measured using prostaglandin E2 EIA Kit-Monoclonal (Cayman Chemical, Ann Arbor, 

MI) which ranges in sensitivity from 7.8 pg/ml to 1000 pg/ml.  Each supernatant was 

assayed at two dilutions and each dilution was assayed in duplicate. 

Protein Assay   

Measurements of protein in homogenates from mouse skin were run using a Bio-Rad 

protein assay kit, catalog no. 500-0006 (Richmond, CA). 
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Statistics   

Data were expressed as the mean + SEM for each group.  A one-way ANOVA test was 

employed to compare the responses between treatments.  Statistical significance was set 

at p<0.05. 

Results 

Phenol-Induced Oxidative Stress   

Dermal exposure to PhOH was found to cause a significant depletion in the overall 

antioxidant status of murine skin.  A significant decrease in GSH (73.3%) in the skin of 

B6C3F1 mice was observed as early as 1 hour post-exposure to PhOH. Protein thiol, 

vitamin E, and total antioxidant reserve levels were also significantly reduced by 82%, 

50%, and 52.7%, respectively (Table 1.1). 

Skin Inflammation of B6C3F1 Mice Following PhOH Exposure   

Skin bi-fold thickness was assessed as a measure of skin inflammation following 

exposure to phenol (1.75, 3.5, 7.0 mmol/kg; 0.5, 1, 2, 3, and 6 hours).  Phenol exposure 

resulted in significant dose-dependent increase in skin bi-fold thickness of B6C3F1 mice 

as compared to control (Figure 1.1A).  The observed increase in skin bi-fold thickness 

following exposure to PhOH (3.5 mmol/kg) was not time-dependent. A 90% increase in 

skin bi-fold thickness occurred as early as 0.5 hours post-exposure and the same levels 

persisted through 6 hours post-exposure (Figure 1.1B).  No changes in skin bi-fold 

thickness were observed in vehicle (phosphate buffered saline) exposed mice.    

Depletion of GSH in Skin of B6C3F1 Mice by Treatment with BSO and BCNU  

BCNU inhibits glutathione reductase thereby causing a depletion in glutathione.  A time-

course study of the effects of BCNU revealed no significant differences once a 30% 
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decrease was achieved 3 hours post-exposure (Figure 1.2A). BSO irreversibly inhibits the 

enzyme γ-glutamylcysteine synthetase.  An initial decrease in glutathione levels of 52.2%                              

was achieved with 2 injections of BSO in a 21 hour time period.  A time course study of 

the effects of BSO revealed no further significant differences in the level of GSH at later 

time points (Figure 1.1B). 

Formation of Lipid-derived Radicals following PhOH Exposure   

Phenol exposure resulted in the development of lipid-derived radicals in the skin of 

B6C3F1 mice as detected by ESR spectroscopy 0.5 hours following dermal exposure.  

Topical exposure with PhOH in animals with a reduced level of GSH, as a result of BSO 

or BCNU treatment, caused a higher degree of free radical formation (Figure 1.3C, D). 

 

Computer simulation of the detected radical adducts was consistent with the presence of 

2 radical species in the skin of PhOH and BCNU/PhOH exposed animals.  The radical 

adducts had coupling constants of (1) aN=15.6G; aH=3.2G and (2) aN=14.8; aH=2.7.  

Radical 1 consisted of 60-75% of the obtained spectra and was identified as a carbon-

centered lipid adduct, i.e. a methyl radical, (Figure 1.4; Shvedova et al., 2002).  Radical 2 

was 25-40% of the obtained spectra and was determined to be an oxygen-centered lipid 

radical, i.e. lipoxyl radical. 

 

The spectra obtained from the BSO/PhOH exposed animals were slightly different 

compared to those obtained from PhOH and BCNU/PhOH exposed animals. In 

particular, the ESR spectra from the BSO/PhOH-exposed animals consisted of 2 radical 

species. Radical 1 had coupling constants which corresponded to radical 1 from the 
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PhOH and BCNU/PhOH exposed animals and was determined to be a carbon-centered 

lipid adduct (aN=15.2G; aH=3.35G).  In contrast, radical 2 was an ascorbate radical 

(aH=1.9G). 

 

The major radical product detected was a carbon-centered radical adduct.  Integration of 

the carbon-centered radical was done to determine the extent of the radical formation.  

Phenol exposure alone resulted in a carbon-centered radical with an integrated intensity 

of 7.3, while in BCNU/PhOH or BSO/PhOH exposed animals significantly higher 

production of carbon-centered radicals with an integrated intensities of 17.4 and 11.8 

arbitrary units, respectively  (Figure 1.3E). 

Glutathione and Protein Thiol Oxidation as a Result of PhOH Exposure   

Topical exposure to PhOH (3.5mmol/kg; 30 minutes) reduced GSH levels in the skin of 

mice by 68%. Exposure to BCNU/PhOH resulted in significant lower of level of GSH in 

the skin of mice (80% decrease versus control) compared to mice treated with PhOH 

alone (68% decrease versus control) (Figure 1.5).  BSO/PhOH exposure also significantly 

decreased the level of GSH (75% decrease versus control) in the skin of mice as 

compared to those treated with PhOH alone. 

 

Oxidation of protein thiols also occurred as a result of PhOH exposure.  Topical exposure 

to phenol resulted in a significant (82%) reduction in protein thiol levels.  Animals 

exposed to PhOH as well as those with BCNU-depleted glutathione prior to phenol 

exposure had a significant 82% reduction in protein thiol levels (Figure 1.5, Inset). 
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Exposure of mice to PhOH or BCNU/PhOH had similar effects on the level of vitamin E 

resulting in a 50% reduction (Figure 1.6). 

Vitamin E Levels in Murine Skin following PhOH Exposure  

Topical Exposure to PhOH significantly decreased vitamin E levels by 45% in the skin of 

B6C3F1 mice exposed to PhOH (3.5 mmol/kg; 30 minutes).  Glutathione depletion via 

BCNU administration also resulted in a significant decrease in vitamin E levels (45%) as 

compared to control mice (Figure 1.6). 

Total Antioxidant Reserve Status of Murine Skin following PhOH Exposure   

Topical PhOH exposure caused a significant 53% reduction in the total antioxidant status 

as compared to the skin of control mice.  Depletion of glutathione with BCNU prior to 

phenol exposure resulted in a 64% reduction in total antioxidant reserves as compared to 

control animals (Figure 1.7).  

Skin Histopathology after PhOH Exposure   

Animals painted with saline (Figure 1.8A) as well as animals treated with BCNU (Figure 

1.8E) or BSO (Figure 1.8C) had normal skin structure. Topical exposure to PhOH (1 

hour) was shown to cause recruitment of inflammatory cells as observed by the presence 

of inflammatory cells within the blood vessels of the skin (Figure 1.8E, inset).  Depletion 

of GSH with BCNU or BSO prior to PhOH exposure caused a more dispersed 

inflammation in the skin, i.e. inflammatory cells were seen throughout the tissue after 

PhOH exposure in mice pretreated with BCNU and BSO (Figure 1.8D, F). 
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Prostaglandin E2 Levels in JB6 Mouse Epidermal Cells following PhOH Exposure   

To reveal whether PhOH exposure induced the release of inflammatory mediators, JB6 

mouse epidermal cells were exposed to phenol (15mM). Figure 9A reveals a time-

dependent increase in the release of prostaglandin E2 after PhOH exposure (15mM; 1/2, 

1, 2, and 18 hours).  In cells exposed to BSO/PhOH, the amount of prostaglandin E2 was 

more significantly increased (7.6-fold) as compared to control and phenol exposed cells 

(1.6-fold).  The observed increases in prostaglandin E2 persisted through 18 hours post-

exposure (Figure 1.9B). The COX-2 inhibitor, aspirin, reduced the observed increase in 

prostaglandin E2; however, the levels did not return to the control levels (Figure 1.10).  

IL-1β release by JB6 Mouse Epidermal Cells following PhOH Exposure  

Cellular exposure to PhOH induced the release of IL-1β (1.8-fold versus control) into the 

cellular supernatant.  A diminished level of GSH (BSO) prior to PhOH exposure further 

enhanced the release of IL-1β (2.2-fold).  At early time points (1/2, 1, and 2 hours), 

PhOH exposure led to a 50% increase in the level of IL-1β while BSO/PhOH exposure 

caused a 60% increase in IL-1β as compared to control (Figure 1.11A).  These results 

were time-dependent with a significant difference observed 18 hours post-exposure 

(Figure 1.11B).  At later time points (18 hours), PhOH exposure led to a 4.5-fold increase 

in IL-1β released by the cells pretreated with BSO, while PhOH alone caused a 2.5-fold 

increase in IL-1β (Figure 1.11B).  

Discussion 

Dermal exposure to phenolic compounds are known to cause skin rashes, burns and 

ulceration, dermal inflammation and necrosis, irritant and allergic contact dermatitis, 
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eczematous “black-spot” dermatitis, leukoderma, and cancer promotion (Ames et al., 

1975; Bracher et al., 1990). Topical application of PhOH directly affects the skin by 

inducing inflammation and tissue necrosis (Horch et al., 1994; Merliss, 1972; Trupmann 

and Ellenby, 1979).  Severe edema, erythema, and necrosis occur as a result of 

application of PhOH (Brown et al., 1975; Conning and Hayes, 1970).   

 

A potential mechanism for the toxic effects of PhOH has been described as “futile thiol 

pumping”.  The one electron oxidation of phenol and phenolic compounds by oxidative 

enzymes, such as peroxidases, prostaglandin synthetase and tyrosinase, leads to the 

generation of phenoxyl radicals (Eisenstein et al., 1992).  Metabolism of phenol has been 

shown to result in the formation of phenoxyl radical (Kolachana et al., 1993).  These 

enzymatically formed phenoxyl radicals may then be reduced by thiols to regenerate the 

phenolic compound as a substrate for repeated enzyme catalyzed one-electron oxidation.  

Oxidation of thiols generates thiyl radicals, which are subsequently able to interact with 

intracellular thiols and oxygen and initiate new oxidative cascades that generate new 

ROS, such as superoxide and hydroxyl radicals (Shvedova et al., 2000).  If redox-cycling 

of PhOH was occurring, depletion of glutathione prior to PhOH exposure would allow for 

an accumulation of phenoxyl radicals within the tissue.  The results of this study show 

increased radical formation in animals with depleted glutathione prior to PhOH exposure.  

In addition, depletion of glutathione prior to PhOH exposure also caused a significant 

depletion of the antioxidant network, i.e. vitamin E and total antioxidant reserves, of the 

skin (Figure 2) thereby making the animal more susceptible to toxic outcomes, i.e. 

increased inflammation and tissue damage, resulting from PhOH exposure.  Therefore, 
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these results show that the redox cycling of phenoxyl radicals are capable of generating 

significant oxidative stress.  An imbalance in the antioxidant status of the tissue 

particularly may result in enhanced generation of ROS and oxidative damage to protein, 

DNA, and lipids (Selassie et al., 1998).  

 
GSH plays a major role in maintaining the intracellular redox balance as well as the 

regulation of the oxidative stress signaling pathways (Meister, 1988; Haddad and Land, 

2000; Haddad et al., 2000).  Under physiological conditions, thiols are highly reductive.  

GSH acts as an antioxidant by detoxifing highly reactive peroxides (ROOH) via the 

conjugation of electophiles and metals (Coles and Kadlubar, 2003; Fujii et al., 2003; 

Miyamoto et al., 2003; Zelck and Von Janowsky, 2004).  GSH depletion enhances the 

presence of radicals; therefore, GSH serves to prevent phenol-induced damage by 

decreasing the formation of free radicals.  The current studies found that phenol exposure 

resulted in the production of carbon-centered lipid radical adducts.  Significantly higher 

radical production was detected in the lipid extracts of the skin of mice with reduced 

glutathione prior to phenol exposure.  GSH also plays a role in maintaining intracellular 

protein integrity by the reduction of disulfide linkages and regulating their synthesis.  It 

acts as a regulator of cellular sulfhydryl status (Haddad and Harb, 2005).  

 

Depletion of GSH has been linked to a variety of disease states (Cantin et al., 1989; 

Bunnell and Pacht, 1993; Roum et al., 1993; Saugstad, 1997).  GSH depletion was 

achieved by BCNU or BSO.  ESR simulations showed the presence of differential 

radicals in BCNU/PhOH and BSO/PhOH exposed animals.  ESR from both 

BCNU/PhOH and BSO/PhOH exposed animals showed the presence of a carbon-
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centered lipid radicals.  BCNU/PhOH ESR spectra also showed the presence of oxygen-

centered lipid radicals, while BSO/PhOH ESR spectra showed ascorbate radicals.  These 

observed differences are likely due to the transfer of the oxygen-centered radicals 

detected in the lipids of BCNU/PhOH exposed mice to the aqueous phase where it is able 

to interact with ascorbate to form the ascorbyl radicals detected in BSO/PhOH exposed 

mice. These radicals are most likely due to thiol oxidation as a result of phenol exposure 

generating thiyl radicals, which are subsequently able to interact with intracellular thiols 

and oxygen initiating new oxidative cascades with formation of superoxide and hydroxyl 

radicals (Shvedova et al., 2000). 

 

Oxidative conditions play a major role in modulating redox states by altering the dynamic 

equilibrium of GSH homeostasis (Haddad et al., 2000).  Cytokines which are mediators 

of inflammation and oxidative stress (Nussler et al., 1992; Desmarquest et al., 1998; 

Yamashita et al., 1999) can affect the GSH content thereby altering the redox equilibrium 

(Chen et al., 1998).  GSH and GSH precursors are able to down-regulate cytokine 

synthesis and activation.  Depletion of GSH enhances cytokine secretion by increasing 

the production of ROS (Gosset et al., 1999). 

  

The expression and activation of redox-sensitive/responsive transcription factors have 

been shown to be affected by GSH status (Haddad and Harb, 2005). An IκB-α/NF-αB 

independent pathway is responsible for mediating the redox-dependent regulation of 

inflammatory cytokines.  Antioxidants also inhibit cytokine production via an NF-κB 

dependent pathway (Blanchard et al., 2001). Cytokine production is regulated by the 
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presence of ROS.  A decreased level of GSH, as achieved by BSO treatment, has been 

shown to block NF-κB activation by stabilizing cytosolic inhibitory-κB (IκB)-α and 

down-regulating its phosphorylation (Haddad, 2000).  GSH depletion augments the 

oxidative stress-mediated inflammatory response via a mechanism which is not entirely 

NFκB dependent (Haddad, 2000).  GSH depletion results in an overabundance of ROS, 

which subsequently leads to an increase in cytokine production.  We found that topical 

exposure of B6C3F1 mice to phenol caused the development of oxidative stress. GSH 

levels were found to play a significant role in modulating the inflammatory response to 

phenol.  In vitro experiments further supported the importance of GSH in controlling 

inflammation.  Depletion of GSH prior to phenol exposure resulted in an amplified 

release of prostaglandin E2 and IL-1β.  

 

In conclusion, the present study provides evidence for the role of GSH in the modulation 

of the inflammatory response observed following phenol exposure.  We found that 

dermal exposure to phenol caused oxidation of GSH and protein thiols and decreased 

vitamin E and total antioxidant reserves in skin. 

 
 

55



www.manaraa.com

Tables and Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 

Antioxidant Control Phenol Decrease

Vitamin E
(pmol/mg)

286.3 ± 58.9 143.1 ± 20.9 50.0%

Glutathione
(nmol/mg)

13.1 ± 1.0 3.5 ± 0.4 73.7%

Protein Thiols
(nmol/mg)

36.2 ± 2.2 6.5 ± 0.9 82.0%

Total Antioxidant 
Reserve (nmol/mg)

694.9 ± 84.4 328.5 ± 12.7 52.7%

*

*

*

*

Antioxidant Control Phenol Decrease

Vitamin E
(pmol/mg)

286.3 ± 58.9 143.1 ± 20.9 50.0%

Glutathione
(nmol/mg)

13.1 ± 1.0 3.5 ± 0.4 73.7%

Protein Thiols
(nmol/mg)

36.2 ± 2.2 6.5 ± 0.9 82.0%

Total Antioxidant 
Reserve (nmol/mg)

694.9 ± 84.4 328.5 ± 12.7 52.7%

*

*

*

*

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1.1.  Antioxidant depletion in skin of B6C3F1 mice after topical treatment with 
phenol.  Mean + SEM of 3 experiments, *p<0.05 versus control. 
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Figure 1.1.  A.  Dose-dependent increase in skin bi-fold thickness as a result of dermal 
phenol exposure in B6C3F1 mice.  Mice were painted on the dorsal area of the back with 
1.75, 3.5, or 7.0 mmol/kg PhOH.  Skin bi-fold thickness was measured 2 hours following 
exposure.  B.  Time-dependent increase in skin bi-fold thickness as a result of dermal 
phenol exposure in B6C3F1 mice.  Mice were painted on the dorsal area of the back with 
phenol (3.5 mmol/kg).  Skin bi-fold thickness was measured 0.5, 1, 2, 3, or 6 hours 
following phenol exposure. Values are means ± SEM of 3 experiments. *p<0.05 versus 
PBS treated control mice. 
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Figure 1.2.  A.  Time-course depletion of glutathione by 1,3-bis(chloroethyl)-1-
nitrosourea (BCNU) in the skin of B6C3F1 mice.  Mice were injected intraperitoneally 
with BCNU (40 mg/kg, 100 µl).  Skin was collected for GSH analysis 3.5, 7.0 or 18 
hours post-exposure.  B.  Time-course depletion of glutathione by L-buthione-[S,R]-
sulfoximine (BSO) in the skin of B6C3F1 mice. Mice were injected intraperitoneally 2 
times with BSO (2 mmol/kg, 100 µl).  Skin was collected for GSH analysis 21, 24, or 27 
hours post-exposure. Values are means ± SEM of 3 experiments. *p<0.05 versus PBS 
treated control mice. 
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Figure 1.3.  ESR detection of lipid-derived PBN spin-trapped free radicals formed in 
vivo in the skin of B6C3F1 mice topically treated with phenol.  Mice were 
intraperitoneally injected with vehicle (saline, 100 µl), BCNU (40 mg/kg, 100 µl) or BSO 
(2 mmol/kg, 100 µl) then PBN was subcutaneously injected 10 minutes prior to phenol 
exposure.  Thirty minutes following phenol exposure (3.5 mmol/kg), lipid extracts were 
isolated from the skin and used for ESR measurements.  A. PBN- and saline-exposed 
animals; B.  PBN- and PhOH-exposed animals; C. BSO-, PBN- and PhOH-exposed 
animals; D.  BCNU-, PBN-, and PhOH-exposed animals.  E.  Average integrated 
intensity of lipid-derived carbon-centered radicals obtained from B6C3F1 mice topically 
exposed to phenol as detected by ESR.  Values are means ± SEM of 3 experiments.  
*p<0.05 versus phenol treated mice.  Instrumental conditions: microwave power, 20 mW; 
modulation amplitude, 1.0 G; time constant, 1.3 sec; conversion time, 0.6 sec.   
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Figure 1.4.  Computer simulation of carbon-centered radicals from B6C3F1 mice 
topically treated with phenol as obtained by ESR.  A.  ESR spectrum of PBN spin-
trapped lipid-derived radical adduct formed in vivo in skin of B6C3F1 mice injected with 
BCNU and exposed topically to PhOH; B.  Complete computer simulation of the 
spectrum in (A) with hyperfine coupling constants: aN=15.6G and aH=3.2G. 
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Figure 1.5.  The effect of BCNU/PhOH or BSO/PhOH exposure on the level of GSH.  
Inset- Effect of phenol plus BCNU on the level of protein thiols in the skin of B6C3F1 
mice.  Mice were intraperitoneally injected with vehicle (PBS, 100 µl), BCNU (40 
mg/kg, 100 µl), or BSO (2 mmol/kg, 100 µl) prior to topical phenol (PhOH) exposure.  
Mice were then painted with PhOH (3.5 mmol/kg) and sacrificed 0.5 hours after 
exposure.  Values are means ± SEM of 3 experiments.  *p<0.05 versus PBS-treated 
control mice; **p<0.05 versus BCNU or BSO-exposed mice; ***p<0.05 versus PhOH- 
exposed mice.   
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Figure 1.6.  The effect of BCNU/PhOH exposure on the level of vitamin E in the skin of 
B6C3F1 mice.  Mice were intraperitoneally injected with vehicle (PBS, 100 µl) or BCNU 
(40 mg/kg, 100 µl) 3 hours prior to topical exposure to phenol (PhOH).  Mice were then 
painted with PhOH (3.5 mmol/kg) and sacrificed 0.5 hours after exposure.  Values are 
means ± SEM of 3 experiments.  *p<0.05 versus PBS-treated control mice; **p<0.05 
versus BCNU-exposed mice. 
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Figure 1.7.  The effect of BCNU/PhOH on the level of total antioxidant reserve in the 
skin of B6C3F1 mice.  Mice were intraperitoneally injected with vehicle (PBS, 100 µl) or 
BCNU (40 mg/kg, 100 µl) 3 hours prior to topical exposure to phenol (PhOH).  Mice 
were then painted with PhOH (3.5 mmol/kg) and sacrificed 0.5 hours after exposure.  
Values are means ± SEM of 3 experiments.   *p<0.05 versus PBS-treated control mice; 
**p<0.05 versus BCNU-exposed mice; ***p<0.05 versus PhOH-exposed mice. 
 
 
 
 
 
 
 
 
 
 
 

 
 

63



www.manaraa.com

A

C

B

D

E F

A

C

B

D

E F

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.8.  Skin histology of B6C3F1 female mice treated topically with phenol 
following administration of BSO or BCNU.  Mice were intraperitoneally injected with 
vehicle (PBS, 100 µl), BCNU (40 mg/kg, 100 µl), or BSO (2 mmol/kg, 100 µl) prior to 
topical exposure to PhOH.  Mice were then painted with phenol (3.5 mmol/kg) and 
sacrificed 1 hour after exposure.  A. 1 hour after painting with saline; B.  1 hour after 
painting with phenol; C.  1 hour after painting with saline following BSO administration; 
D.  1 hour after painting with phenol following administration of BSO; E. 1 hour after 
painting with saline following administration of BCNU; F.  1 hour after painting with 
phenol following administration of BCNU.  Magnification: 10x; Inset Magnification: 
40x. 
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Figure 1.9.  A. Time course of prostaglandin E2 release by JB-6 cells following 
phenol/BSO exposure. Circles- control cells; Diamonds- cells exposed to BSO (10 µM); 
Triangles- cells exposed to PhOH (15 mM); Squares- cells exposed to BSO/PhOH.  B.  
Level of prostaglandin E2 in JB-6 cells following 18 hours of PhOH/BSO exposure.  
Cells were exposed to BSO (10 µM). Three hours following BSO, cells were exposed to 
phenol (15 mM).  0.5, 1, 2, or 18 hours following exposure, cellular supernatant was 
collected and analyzed for prostaglandin E2.  Values are means ± SEM of 3 experiments.  
*p<0.05 versus control cells; **p<0.05 versus BSO-exposed cells, ***p<0.05 versus 
PhOH-exposed cells .  
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Figure 1.10.  Effect of COX-2 inhibitor on the level of prostaglandin E2 in JB-6 cells 
following 18 hours of phenol/ BSO exposure.  JB6 cells were exposed to BSO (10 µM) 
and aspirin (50 µM). Three hours following BSO, cells were exposed to phenol (15 mM).  
Eighteen hours following exposure, cellular supernatant was collected and analyzed for 
prostaglandin E2. Values are means ± SEM of 3 experiments.  *p<0.05 versus aspirin 
treated cells; **p<0.05 versus phenol-exposed cells; ***p<0.05 versus BSO/PhOH-
exposed cells. 
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Figure 1.11.  A.  Time course of IL-1β expression in JB-6 cells following exposure to 
phenol.  Circles- control cells; Diamonds- cells exposed to BSO (10 µM); Triangles- cells 
exposed to PhOH (15 mM); Squares- cells exposed to BSO/PhOH.  B. IL-1β Expression 
by JB-6 cells 18 hours following phenol exposure.  JB6 cells were exposed to BSO (10 
µM) for 3 hours.  Following BSH exposure, cells were exposed to phenol (15 mM) for 
0.5, 1, 2, or 18 hours. Cellular supernatant was collected and analyzed for IL-1β.  Values 
are means ± SEM of 3 experiments.  *p<0.05 versus control cells; **p<0.05 versus BSO- 
treated cells; ***p<0.05 versus PhOH-treated cells. 
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Abstract 

The skin is exposed to numerous environmental, chemical, and physical stressors (UV-

irradiation) whose injurious action is often associated with the development of oxidative 

stress. While the skin possesses an elaborate antioxidant defense system to prevent 

oxidative stress, excessive exposure to occupational and environmental insults can 

overwhelm the cutaneous antioxidant capacity. Age-related decline of antioxidant 

protection may further enhance sensitivity of skin to chemically induced oxidative 

damage. To assess whether aging affected the antioxidant capabilities of the skin, we 

studied changes in vitamin E, glutathione (GSH), ascorbate, and total antioxidant reserve 

levels in the skin of female mice evaluated from 4 to 32 weeks of age.  We found that 

aging significantly reduced the antioxidant levels in the skin of mice.   Among the studied 

antioxidants, we observed the most significant and rapid decrease occurred in vitamin E 

content. Because dermal exposure is a major route leading to skin toxicity, we studied the 

effects of topical application of cumene hydroperoxide (Cum-OOH) to the skin by 

assessing the effects on the antioxidant defense of the skin of young and old mice. Two 

animal models were used: 1) mice with an alimentary deficiency of vitamin E and 2) 

mice with a genetic manipulation targeting the tocopherol transporter protein (α-TTP 

knockout). We found that oxidative DNA damage (8-oxo-2’-deoxyguanosine) in skin of 

old mice (32 weeks) occurred independently of vitamin E status while DNA damage in 

skin of young animals (13 weeks) exposed to Cum-OOH was dependent upon vitamin E. 

Cum-OOH induced oxidative stress in old mice as assessed by depletion of GSH, 

ascorbate, and total antioxidant reserve. In vitamin E deficient animals, Cum-OOH 

induced morphological changes to a greater extent in the skin of old compared to young 
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mice. Similar results were found when the α-TTP knockout mice were exposed to Cum-

OOH.  In these animals, initial vitamin E-levels were only slightly reduced compared to 

those in the group given a vitamin E deficient diet.  After Cum-OOH exposure, α-TTP 

knockout mice had significantly less vitamin E compared to α-TTP knockout control 

mice treated with vehicle.  Cum-OOH exposure of mice given a vitamin E deficient diet 

resulted in a depletion of vitamin E with no detectable amount present in skin. GSH and 

ascorbate were also significantly reduced in α-TTP knockout mice following Cum-OOH 

exposure; however, this reduction was not as significant as the reduction of GSH and 

ascorbate observed in skin of mice with an alimentary deficiency in vitamin E. In 

conclusion, antioxidants play a prominent role in the defense of skin against oxidative 

injury induced in vivo.  
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Introduction 

The skin is exposed to numerous environmental chemical and physical agents which may 

result in the development of oxidative stress.  The skin has a well developed and efficient 

antioxidant system to cope with oxidative injury (Beckman and Ames, 1998).  It is 

generally accepted that one of the major contributors to skin aging, skin disorders and 

skin diseases results from reactive oxygen species (ROS).  Antioxidant defense 

mechanisms play a major role in protecting the skin and preventing the development of 

oxidative damage via the detoxification of ROS and reduction of inflammatory cytokine 

production at the expense of the antioxidant system which includes GSH, vitamin E, and 

vitamin C (Kohen and Nyska, 2003; Haddad et al., 2001; Hudson, 2001; Petroff et al., 

2001). The age-related decline of the skin’s antioxidant defense systems would certainly 

make the skin more susceptible to chemically induced oxidative damage. 

 

Many peroxy compounds are well known to be a source of free radicals as they are 

widely used as initiators of polymerization. Organic peroxides (OP) are extensively used 

in chemical and pharmaceutical industries (Manly, 1956) as catalysts, intermediates, and 

raw materials for a number of products, e.g. reinforced plastics, rubber curing, finishing 

agents for acetate yarns, dental cements and restoratives, and treatments for acne.  In the 

food industry, OP are used for bleaching flour, fats, oils, waxes and milk, and preparation 

of certain cheeses (Lewis, 1993; Medical Economics Co., 1997). 

 

Cutaneous exposure to organic hydroperoxides is known to cause a delayed reaction in 

skin resulting in severe erythema, edema, and vesiculation (Floyd and Stokinger, 1958). 

OP-induced lipid peroxidation was implicated as one of the essential mechanisms of 
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toxicity in keratinocytes (Vessey et al. 1992, 1995; Babich et al., 1996).  The question 

can be raised as to whether oxidative stress occurs in vivo to yield free radicals in skin 

exposed to Cum-OOH. Vitamin E represents probably one of the best examples of a 

“perfect” lipid-soluble antioxidant in membranes and lipoproteins where it can interact 

and be recycled by other lipid-soluble antioxidants (e.g., coenzyme Q) (Stoyanovsky et 

al, 1995) and water-soluble antioxidants (e.g., vitamin C and thiols) (Kagan et al, 1992). 

In addition, vitamin E can be regenerated from its radical by electron transport in 

mitochondria and endoplasmic reticulum (Packer et al, 1989). It is well known that 

susceptibility to lipid peroxidation is affected by levels of vitamin E in different tissues 

(Comba et al, 1975; Tappel, 1980; Kadiiska et al, 1993), including skin  (Machlin et al, 

1977; Igarashi et al, 1989).  The present study was designed to assess whether antioxidant 

status is changed in the skin of mice with age and whether topical exposure to Cum-OOH 

differently affected the skin of young and old mice.   

Materials and Methods 

Chemicals   

Fatty acid-free serum albumin (fSA), luminol, sodium dodecyl sulfate (SDS), cumene 

hydroperoxide (Cum-OOH), glutathione, and ascorbate were purchased from Sigma 

Chemicals Co. (St. Louis, MO).  Methanol, ethanol, chloroform, hexane and water 

(HPLC grade) were purchased from Aldrich Chemical Co (Milwaukee, WI).  Thio-Glo-1 

was obtained from Covalent Inc (Wobum, MA).  2,2’-Azobis(2-aminodinopropane)-

dihydrochloride (AAPH) was purchased from Wako Chemicals USA, Inc. (Richmond, 

VA).   
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Animals 

C57BL/6, B6.129S4-Ttpa<tm1Far> (α-TTP knockout on a C57BL/6 background), 

Balb/C, and B6C3F1 mice (3-4 weeks; 16-18 g in weight) were obtained from Jackson 

Laboratories (Bar Harbor, ME).  Each mouse was housed in an individual ventilated cage 

with Alpha-Dri cellulose chips and hardwood Beta-chips for bedding and provided 

HEPA-filtered air under controlled environmental conditions in an AAALAC accredited, 

specific pathogen-free facility.  After one-week acclimation, animals were placed on a 

basal (sufficient) or vitamin E deficient diet (Purina Mills, Richmond, IN) for 10 (132 

weeks old, young) or 29 weeks (30 weeks old, old) and α-TTP knockout mice were kept 

on basal diet for 29 weeks.  The sufficient Diet 5755 is a purified synthetic diet that 

provides all essential nutrients to support maintenance, growth, gestation, and lactation in 

laboratory mice (Table 2.1).  The vitamin E deficient diet is based on the sufficient diet 

5755 from which vitamin E was removed.  Animals were supplied with fresh diet daily 

and water was provided ad libitum.  All animal procedures were performed in accordance 

with an approved ACUC protocol.  The animals were weighed biweekly, and the food 

consumption was recorded monthly. 

Topical Exposure of Mice to Cum-OOH 

Twenty-four hours prior to exposure, animals were shaved on the dorsal area of the back.  

Mice were topically exposed to Cum-OOH (100 µl; 12 mmol/kg) for 1 or 2 hours.  

Following exposure, animals were sacrificed by inhalation of an excess of carbon dioxide 

after the termination of the treatments. Skin flaps from the inter-scapular area of the back 

of mice (1.5 x 2.0 cm2) were excised and samples were taken for histopathology and 

biochemical analyses. 

 
 

78



www.manaraa.com

Skin Collections and Preparation of Homogenates   

Skin flaps from the intrascapular area of the back of mouse were excised and samples 

taken for histopathology and biochemical analysis.  Skin for biochemical analysis was 

immediately frozen at –80º C until processed.  The skin homogenates were prepared from 

frozen tissues with ice-cold phosphate-buffered saline (PBS, 7.4) using a tissue tearer 

(model 985-370, Biospec Products, Inc., Racine, WI). 

Skin Preparation for Histopathology Examination 

The skin was processed after fixation in 10% neutral buffered formalin, following the 

standard operating procedures of the laboratory.  Hematoxylin and eosin (H&E) stained 

histology slides were used for light microscopy examination of the tissue.  

Photomicrographs were prepared using an Olympus 300 double-headed microscope 

(Tokyo, Japan). 

HPLC Assay of α-Tocopherol 

Extracts of α-tocopherol from skin homogenates were isolated using a procedure 

described by Lang et al. (1986).  A Waters HPLC system with a 717 auto sampler, a 

Hewlett Packard ODS Hypersil column (5 mm; 200 X 4.6 mm), a Waters 600 Controller 

pump, and a 474 fluorescence detector was used to measure α-tocopherol in the samples.  

The wavelengths employed in the assay were 292 nm (excitation) and 324 nm (emission).  

Both the excitation and emission slits were 5 nm.  Eluent was CH3OH with a flow rate of 

1 ml/min.  Under these conditions, the retention time for α-tocopherol was 8.2 min.  The 

minimum detection level for α-tocopherol in the samples was 0.1 pmol/ mg of protein.  

The data acquired were exported  from the Waters 474 detector using Millennium 2000 

software (Waters Associates, Milford, MA). 
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HPLC Assay of Ascorbic Acid 

Following protein precipiation with 10% trichloroacetic acid and sedimentation (2000 g 

X 10 min), supernatants were obtained from skin homogenates.  Supernatants were used 

for HPLC measurements of ascorbic acid. A mobile phase of 1:24 methanol-water with 

pH 3.0 adjusted by acetic acid at a flow rate of 1.0 ml/min was used. A Waters HPLC 

system with a 717 auto sampler, a Hewlett Packard ODS Hypersil column (5 mm; 200 X 

4.6 mm), a Waters 600 Controller pump, and a 474 fluorescence detector was used to 

measure ascorbic acid in the samples.   Under these conditions, the ascorbic acid 

retention time was 3.0 minutes.  The observed ascorbate peak was completely abolished 

by the addition of ascorbate oxidase.    

Chemiluminescence Measurements of Total Antioxidant Reserve  

A water-soluble azo-initiator, 2,2' azobis(2-aminodinopropane)-dihydrochloride (AAPH), 

was used to produce peroxyl radicals (Niki, 1990). Oxidation of luminol by AAPH-derived 

peroxyl radicals was assayed by the chemiluminescence response. A delay in the 

chemiluminescence response caused by interaction of endogenous antioxidants with AAPH-

derived peroxyl radicals was observed upon addition of homogenates. Based on the known 

rate of peroxyl radical generation by AAPH, the amount of peroxyl radicals scavenged by 

endogenous antioxidants was evaluated. The incubation medium contained 0.1 M phosphate 

buffer (pH 7.4) at 37°C, AAPH (50 mM), and luminol (0.4 mM). The reaction was started 

by the addition of AAPH. A luminescent analyzer 633 (Coral Biomedical, Inc., San Diego, 

CA) was employed for determination. 
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Glutathione (GSH) and Protein Thiols assay in tissue 

GSH and total protein sulfhydryl concentration in homogenates of skin was determined 

using ThioGloTM-1, a maleimide reagent which produces a highly fluorescent product 

upon reaction with sulfhydryl groups (Shvedova et al., 2000). A standard curve was 

established by addition of GSH (0.02-1.0 µM) to 0.1 M phosphate buffer (pH 7.4) 

containing 10 µM ThioGloTM -1. GSH content was estimated from the immediate 

fluorescence response registered upon addition of ThioGloTM -1 to a tissue or cells 

homogenate. Total protein sulfhydryls were determined from the augmentation of the 

fluorescence response after addition of SDS (4 mM) to the same homogenate. A 

spectrofluorophotometer (Shimadzu RF-5000 U, Kyoto, Japan) was employed for the 

assay (excitation 388 nm and emission 500 nm). 

8-Hydroxy-2’-deoxyguanosine  

Skin homogenates were evaluated for the presence of an oxidative DNA damage marker, 

8-hydroxy-2’-deoxyguanosine (8-OHdG).  An enzyme-linked immunosorbent assay 

(ELISA) was used to manufacturers specifications to quantitatively measure 8-OHdG 

(Oxis Health Products, Inc; Portland, OR).  Briefly, an 8-OHdG monoclonal primary 

antibody was used to bind 8-OHdG present within the skin homogenate.  A secondary 

horseradish peroxidase (HRP) conjugated antibody was then used to bind the 

monoclonal: 8-OHdG complex.  Chromogen addition results color development and 

absorbance is measured at 450 nm.  The concentration of 8-OHdG is determined from a 

calibration curve measured simultaneously according to the manufacturer’s protocol.  
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Protein Assay 

Measurements of protein in homogenates of tissue and cells were conducted using a Bio-

Rad protein assay kit, cat. # 500-0006 (Richmond, CA). 

Statistics 

Data were expressed as the mean with + standard error of the mean for each group. One-

way ANOVA with Tukey test was employed to compare the responses between 

treatments. Statistical significance was set at p < 0.05. 

Results 

Effects of Aging on Antioxidant Status of Murine Skin   

Changes in antioxidant status occur in the skin of mice during aging and vitamin E 

alimentary deprivation.  Balb/C mice were fed a diet either sufficient or deficient in 

vitamin E for 29 weeks and changes in antioxidant status of the brain, liver, skin, and 

plasma were monitored.  Changes in vitamin E, total antioxidant reserve, and glutathione 

levels were observed in the liver, plasma, brain, and skin.  The most drastic alteration in 

antioxidant levels occurred in the skin where vitamin E levels were reduced 99.4-fold 

following alimentary vitamin E deprivation for 29 weeks (Table 2.2). 

 

To compare changes in vitamin E status, 2 strains of mice, B6C3F1 and BALB/C, were 

used to determine if the observed alterations were strain-dependent.  Both strains of mice 

exhibited an age-related decline in vitamin E.  Vitamin E levels decreased 82% and 61% 

in B6C3F1 and Balb/C mice, respectively, as animals aged from 4 weeks to 32 weeks  

old (29 weeks on diet).  After 29 weeks of alimentary vitamin E deprivation, we found a 

99.5% reduction in vitamin E in the skin of both B6C3F1 and Balb/C mice (Table 2.3). 
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Effect of Cum-OOH Exposure on Vitamin E in Skin of Young and Old Mice 

To address how old (32 weeks old, 29 weeks on diet) Balb/C mice were affected by 

topical exposure to Cum-OOH (100 µl; 12 mmol/kg), mice were exposed for 2 hours to 

Cum-OOH.  Two hour Cum-OOH exposure resulted in a significant reduction in vitamin 

E levels.  Alimentary depletion of vitamin E for 29 weeks resulted in a reduction in 

vitamin E levels of 99%.  Cum-OOH exposure caused a severe decrease in vitamin E 

content (99.5%) in animals fed a basal diet, while animals given a vitamin E deficient 

diet had vitamin E levels below detectable limits following Cum-OOH exposure (Figure 

2.1). 

Effect of Cum-OOH Exposure on the Glutathione Levels in Skin of Young and Old  

Mice.   

In order to evaluate the redox status of the skin of young (13 weeks) and old (32 weeks) 

Balb/C mice following exposure to Cum-OOH, the level of cellular thiols were measured.  

Old mice had a 38% reduction in the level of GSH present within the skin as compared to 

the young ones.  Exposure of both young and old mice to Cum-OOH for 1 or 2 hours 

significantly reduced the levels of GSH in the skin. Animals, both young and old, fed a 

basal or vitamin E deficient diet had a significant reduction in GSH as a result of Cum-

OOH exposure (Figure 2.2). Dietary vitamin E restriction did not cause a further 

reduction in GSH following Cum-OOH exposure as compared to those observed in mice 

kept on a basal diet.   
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Effect of Cum-OOH Exposure on Total Antioxidant Levels in Skin of Young and Old  

Mice.  

To assess changes in levels of total antioxidant reserve in the skin of Balb/C mice 

following Cum-OOH exposure, a luminol-enhanced chemiluminescence assay was 

applied.  A water-soluble azo-initiator, AAPH, was used to produce peroxyl radicals at a 

constant rate (Niki, 1990).  Interaction of the peroxyl radicals generated by AAPH with 

luminol in phosphate buffer (0.1M, pH 7.4 at 37º C) produced a characteristic luminol 

response.  The addition of skin homogenate to the incubation system resulted in a lag 

period during which the chemiluminescence response was not observed.  Skin 

homogenates from control animals produced a greater lag period than skin homogenates 

from Cum-OOH exposed mice.  This lag period results because of the competition of 

endogenous skin antioxidants with luminol for the AAPH-derived peroxyl radicals 

(Kagan, 1998).  Total antioxidant reserve levels were significantly reduced as a result of 

alimentary vitamin E deprivation.  Young mice had a 35% reduction in total antioxidant 

reserve levels; while, older animals had a 60% reduction in total antioxidant reserve due 

to dietary vitamin E restriction. Exposure to Cum-OOH for 1 hour resulted in a 75% and 

77% reduction in total antioxidant reserve found in young mice fed a basal or vitamin E 

deficient diet, respectively.  Two-hour topical exposure to Cum-OOH resulted in almost 

no detectable antioxidant reserve levels found in the skin of young animals given a basal 

or deficient diet (Figure 2.3A).        

 

Following cumene hydroperoxide exposure, similar trends were observed in changes in 

total antioxidant reserve in the skin of old mice given a basal or vitamin E deficient diet.  

Old mice given a basal or vitamin E deficient diet had a 75% and 62% reduction, in total 
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antioxidant reserve after 1 hour exposure to Cum-OOH.  Two-hour exposure to Cum-

OOH caused a drop in total antioxidant reserve to levels below detection in the skin of 

old animals kept on basal or vitamin E deficient diet (Figure 2.3B).    

Effect of Cum-OOH Exposure on Ascorbate Levels in Skin of Old Mice   

Ascorbate levels in the skin of Balb/C were also altered as a result of dietary restriction in 

vitamin E.  A significant reduction (26%) in ascorbate levels in the skin was observed in 

animals with an alimentary depletion of vitamin E.  Ascorbate levels were altered as a 

result of exposure to Cum-OOH (1 h) in the skin of old mice given a vitamin E sufficient 

or deficient diet.  Exposure to Cum-OOH for 2 h resulted in a 91.5% reduction in 

ascorbate in the skin of animals given a sufficient diet; while, animals given a vitamin E 

deficient diet had levels of ascorbate below detectable limits (Figure 2.4).  

Cum-OOH Induced DNA Damage in Skin of Young and Old Mice   

Following exposure to Cum-OOH for 1 or 2 h, the skin of young and old Balb/C mice 

was evaluated for DNA damage by measuring 8-hydroxy-2’-deoxyguanosine (8-OHdG).  

In young mice, we found no 8-OHdG formation indicating a lack of DNA damage 1 or 2 

hours post-Cum-OOH exposure.  In old mice, we observed no accumulation of 8-OHdG 

in skin one hour post-Cum-OOH; however, 2 hours after exposure to Cum-OOH, we 

found a significant increase (112%) in 8-OHdG formation (Figure 2.5). 

Cum-OOH Induced DNA Damage in Skin of Vitamin E Deficient Mice  

The skin of old Balb/C mice given a diet sufficient or deficient in vitamin E were also 

evaluated for the presence of 8-OHdG after Cum-OOH treatment.  Exposure to Cum-

OOH for 1 hour did not cause an increase in 8-OHdG formation in the skin of animals 
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given a basal or vitamin E deficient diet.  Two hours post-exposure to Cum-OOH 

produced a significant increase in 8-OHdG in the skin of animals given a either basal or 

vitamin E deficient (Figure 2.6).  This indicates that the formation of 8-OHdG in the skin 

of mice exposed to Cum-OOH was independent of the vitamin E skin status (Figure 2.5). 

Skin Histopathology of Young and Old  Mice Exposed to Cum-OOH 

Alterations in skin structure were evaluated in young and old Balb/C mice following 

exposure to Cum-OOH (1 or 2 h).  Young and old mice both exhibited a normal 

epidermis with no age related differences observed in the tissue (Figure 7A, D).  Cum-

OOH exposure for 1 h caused edema in the skin of both young and old mice. Older mice 

also had pronounced muscle degeneration as exhibited by hyperchromaticity and 

condensation in the muscle tissue than seen in the skin of younger mice exposed to Cum-

OOH for 1 hour (Figure 2.7B, E).  Older animals treated with Cum-OOH for 2 h had 

more profound alterations than those observed in the younger animals (Figure 2.7C,F).  

The presence of profuse edema pushing the dermal connective tissue outward as well as 

alterations in skeletal muscle as observed by vacuolation and dissolution of the muscle 

fibers were observed in old mice after 2 h Cum-OOH treatment. 

Skin Histopathology of Vitamin E Deficient Mice Exposed to Cum-OOH 

Following exposure to Cum-OOH (1 or 2 h), the skin of old Balb/C mice fed a basal or 

vitamin E deficient diet was evaluated for structural alterations.  Basal and vitamin E 

deficient mice showed no differences in skin structure (Figure 2.8A, D).  Cum-OOH 

exposure (1 h) caused the development of edema as well as muscle degeneration in the 

skin of mice fed a basal or vitamin E deficient diet.  Animals deficient in vitamin E had 

extensive muscle degeneration compared to that seen in the mice supplied with basal diet 
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and treated with Cum-OOH (1h; Figure 2.8B, E).  Topical exposure to Cum-OOH (2 h) 

further augmented the skin injury seen as structural alterations of muscle accompanied by 

the development of extensive edema.  Vitamin E deficient animals also had more 

prominent muscle degeneration and edema compared to that observed in the skin of 

animals given a basal diet after 2 h Cum-OOH exposure (Figure 2.8C, F). 

Vitamin E Levels in the Skin of α-TTP Mice and C57BL/6 Mice Given a Vitamin E  

Deficient Diet after Topical Cum-OOH Exposure   

A comparison of the response of skin to Cum-OOH exposure was done using mice with 

reduced levels of vitamin E via alimentary restriction and genetic manipulation of the α-

tocopherol transport protein (α-TTP).  Because alimentary restriction of vitamin E 

requires 29 weeks to achieve deprivation (99%) of vitamin E, studies could not be 

conducted utilizing younger mice.  Measurements of vitamin E in α-TTP knockout mice 

revealed that vitamin E levels in the skin of animals were reduced by 75%.      

 

Assessment of vitamin E in skin of C57BL/6 mice fed a basal diet, revealed a 44% 

reduction of vitamin E in the skin after exposure to Cum-OOH.  In vitamin E deficient 

mice, exposure to Cum-OOH reduced vitamin E content in the skin to undetectable 

levels.  α-TTP knockout mice exposed to Cum-OOH exhibit a 97% decrease in vitamin E 

found in skin (Figure 2.9).   

Glutathione Levels in the Skin of α-TTP Knockout Mice and Mice fed a Vitamin E  

Deficient Diet after Topical Cum-OOH Exposure  

C57BL/6 mice given a basal diet had a 15% reduction in GSH following exposure to 

Cum-OOH (Figure 2.10).  During alimentary deprivation of vitamin E, GSH levels were 
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reduced by 17% in skin compared to those animals given basal diet. Exposure of Cum-

OOH to vitamin E deficient mice caused a 95% reduction in glutathione levels in the 

skin.  The deletion of the vitamin E transporter (α-TTP) caused no significant reduction 

in glutathione levels, while topical exposure to Cum-OOH resulted in a 73% reduction in 

GSH skin content (Figure 2.10).   

Ascorbate in the Skin after Topical Cum-OOH Exposure of α-TTP Knockout Mice and  

Mice fed a Vitamin E Deficient Diet   

In C57BL/6 given a basal diet, we found a 75% reduction in ascorbate following 

exposure to Cum-OOH.  In vitamin E deficient mice, the levels of ascorbate were  

reduced by 57% as compared to animals given a basal diet. Exposure of vitamin E 

deficient mice to Cum-OOH resulted in a 97% reduction in ascorbate levels, while in α-

TTP knockout mice exposure to Cum-OOH caused a 95% drop in ascorbate levels 

(Figure 2.11). 

Discussion 

Aging is a naturally occurring process characterized by the progressive accumulation of 

diverse deleterious cellular and tissue changes.  Such changes have been proposed to 

subsequently increase the risk of disease and death (Harman, 1981,1993, 1994, 1996, 

2003).  According to the free radical theory of aging (Harman, 1981), free radical 

reactions occur by virtue of genetic and environmental factors which are responsible for 

the aging process.  Both increased oxidant insult and decline in antioxidant defense 

capacity resulted in an elevated pro-oxidant state found in aged animal and human cells 

and tissue (Hagen, 2003).   
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Low molecular weight antioxidants, e.g. GSH ,ascorbate and vitamin E, present in the 

skin are readily involved in an interlinked network providing the regulation and control 

of accelerated free radical induced injury.  It has been shown that GSH is able to 

synergistically enhance the ascorbate-dependent recycling of vitamin E (Packer, 1991; 

Martensson et al., 1991; Kagan and Packer, 1994; Guo and Packer, 2000; Shvedova et al., 

2000; Shvedova et al., 2001).  Evaluation of the antioxidant status of mice over a 32-

week period revealed an age related decline in antioxidant skin levels specifically seen in 

GSH, vitamin E, and ascorbate.  Antioxidant inadequacy, as a result of dietary vitamin E 

deficiency, genetic disorders, or aging, subsequently decreases other antioxidant of the 

network. This decrease in antioxidant capabilities is linked to an increase in formation of 

reactive oxygen species, cellular injury, and tissue disorders (Nachbar and Korting, 

1995).  Depletion of antioxidants found in this study affect the skin’s susceptibility 

making chemically induced skin damage more pronounced. 

   

We have shown in a previous studies that chemical exposures to Cum-OOH exposure 

resulted in the accelerated generation of radicals found in the skin of mice fed a vitamin E 

deficient diet (Shvedova et al., 2002).  Decreased antioxidant capabilities observed in old 

animals produced severe skin damage after Cum-OOH exposure.  While young and old 

exposed mice both exhibited oxidative stress characterized by a significant depletion of 

GSH, ascorbate, and vitamin E, older mice exhibited extensive skin injury including 

edema and inflammatory cell infiltration along with events leading to muscle 

degeneration after Cum-OOH treatments.  
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The physiological concentration of vitamin E, specifically α-tocopherol, is controlled by 

the α-tocopherol transporter protein (α-TTP) (Traber and Arai, 1999; Gohil et al., 2003).  

The transporter protein preferentially binds α-tocopherol and mediates its secretion into 

the circulation.  α-TTP regulates systemic and organ tissue concentrations of α-

tocopherol.  In normal animals, α-TTP is expressed at high levels in the liver (Arita et al., 

1995; Sato et al., 1993; Yoshida et al., 1992), while relatively low levels are present in 

the brain, spleen, lung and kidney (Hosomi et al., 1997; Traber and Arai, 1999).  Genetic 

deletion of α-TTP caused a significant reduction in vitamin E levels in the skin; however, 

vitamin E was not reduced to the same levels as observed following dietary deprivation in 

the skin of mice given a vitamin E deficient diet (29 weeks).  We found no significant 

reduction in glutathione or ascorbate content occurred in the skin of α-TTP knockout 

mice (29 weeks).  This difference in vitamin E reduction in α-TTP and vitamin E 

deficient mice indicates the possibility that α-TTP does not function as the sole source 

for transport of vitamin E to the skin.  Topical exposure of α-TTP knockout animals to 

Cum-OOH resulted in decreases in GSH and ascorbate similar to those seen in wild-type 

animals. 

 

Toxic outcomes of dermal exposure to Cum-OOH were found to have differential effects 

when the chemical was topically applied to the skin of young and old mice.  Aging 

resulted in a significant reduction in the antioxidants present in the skin, as observed by a 

reduction in GSH, ascorbate, and vitamin E, thereby making the skin more vulnerable to 

free-radical mediated tissue injury. As a result of this age-related decline in the 

antioxidant network in the skin, old mice had more profound tissue and muscle damage 

 
 

90



www.manaraa.com

induced by oxidative stress following Cum-OOH exposure.  Alimentary deficiency in 

vitamin E further exacerbated the observed tissue damage which occurred as a result of 

Cum-OOH exposure.  This indicates the importance of the antioxidant network and 

balance in the prevention of skin injury due to exposure to oxizable occupational 

chemicals. 
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Tables and Figures 

 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Typical Analysis

Ingredients

Protein                     19.3%
Fat                            10.0%
Fiber
Carbohydrate          60.6%

Casein-vitamin 
free                       21.00%

Sucrose                     5.00%
Non-nutritive fiber 

(Solka-floc)           3.00%
Corn oil                    5.00%
Lard                         5.00%
Dextrin                   43.65%
DL-methionine 0.15%
RP vitamin 

mixture                2.00%
Choline Chloride    0.20%
RP mineral 

mixture #10         5.00%
Total                     100.00%

14.3%

2

1

Chemical Composition
Nutrients

1

2

Protein, %               19.3
Fat, %                      10.0
Fiber (Crude), %      4.3
Carbohydrate, %    60.6
Gross Energy, 

kcal/gm                   4.1

Minerals

Calcium, %              0.6
Phosphorus              0.4
Potassium, %           0.4
Magnesium, %     0.065
Sodium, %                0.2
Chlorine, %              0.2
Fluorine, ppm 5.0
Iron, ppm 60.0
Zinc, ppm 20.0
Manganese, ppm 65.0
Copper, ppm 15.0
Cobalt, ppm 3.2
Iodine, ppm 0.6
Chromium, ppm 3.0
Molybdenum, ppm 0.8
Selenium, ppm 0.2

Vitamins

Thiamin Hydrochloride,  ppm 20.0
Riboflavin, ppm 20.0
Nicotinic Acid,  ppm 90.0
Pyridoxine Hydrochloride,  ppm 20.0
d-Calcium Pantothenate,  ppm 60.0
Folic Acid, ppm 4.0
Biotin, ppm 0.4
i-inositol, ppm 200.0
Vitamin, B,  mcg/kg                              20.0
Menadione Dimethylpyrimidinol
Bisulfite, ppm 20.0
Vitamin A Acetate,  IU/gm                     22.0
Vitamin D, IU/gm                                    2.2
Dl-alpha Tocopheryl Acetate, IU/kg 
(sufficient diet)                    50.0
(deficient diet)                   <10.0

12

Typical Analysis

Ingredients

Protein                     19.3%
Fat                            10.0%
Fiber
Carbohydrate          60.6%

Casein-vitamin 
free                       21.00%

Sucrose                     5.00%
Non-nutritive fiber 

(Solka-floc)           3.00%
Corn oil                    5.00%
Lard                         5.00%
Dextrin                   43.65%
DL-methionine 0.15%
RP vitamin 

mixture                2.00%
Choline Chloride    0.20%
RP mineral 

mixture #10         5.00%
Total                     100.00%

14.3%

2

1

Chemical Composition
Nutrients

1

2

Protein, %               19.3
Fat, %                      10.0
Fiber (Crude), %      4.3
Carbohydrate, %    60.6
Gross Energy, 

kcal/gm                   4.1

Minerals

Calcium, %              0.6
Phosphorus              0.4
Potassium, %           0.4
Magnesium, %     0.065
Sodium, %                0.2
Chlorine, %              0.2
Fluorine, ppm 5.0
Iron, ppm 60.0
Zinc, ppm 20.0
Manganese, ppm 65.0
Copper, ppm 15.0
Cobalt, ppm 3.2
Iodine, ppm 0.6
Chromium, ppm 3.0
Molybdenum, ppm 0.8
Selenium, ppm 0.2

Vitamins

Thiamin Hydrochloride,  ppm 20.0
Riboflavin, ppm 20.0
Nicotinic Acid,  ppm 90.0
Pyridoxine Hydrochloride,  ppm 20.0
d-Calcium Pantothenate,  ppm 60.0
Folic Acid, ppm 4.0
Biotin, ppm 0.4
i-inositol, ppm 200.0
Vitamin, B,  mcg/kg                              20.0
Menadione Dimethylpyrimidinol
Bisulfite, ppm 20.0
Vitamin A Acetate,  IU/gm                     22.0
Vitamin D, IU/gm                                    2.2
Dl-alpha Tocopheryl Acetate, IU/kg 
(sufficient diet)                    50.0
(deficient diet)                   <10.0

12

 
Table 2.1.  Composition of vitamin E sufficient and deficient animal diets. 
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Brain
 

 
 
 
 
 
 
 
 
 

Skin

Liver

Plasma

Vitamin E

Fold decrease

Total 
Antioxidant 

Reserve
GSH

3.6

99.4

14.3

8.6

1.6

1.3

1.2

1.7

1.4

17.8

Fold decrease Fold decrease

2.0N.D.

Brain

Skin

Liver

Plasma

Vitamin E

Fold decrease

Total 
Antioxidant 

Reserve
GSH

3.6

99.4

14.3

8.6

1.6

1.3

1.2

1.7

1.4

17.8

Fold decrease Fold decrease

2.0N.D.

 
Table 2.2. Depletion of antioxidants in BALB/C mice fed a vitamin E deficient diet.  
Animals were fed a vitamin E deficient diet for 29 weeks. N.D.- not detected. 
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Age 

3 - 4 weeks old 
(Naïve) 

11 weeks old 
(8 weeks on diet) 

22 weeks old 
(19 weeks on diet) 

32 weeks old 
(29 weeks on diet) 

Basal Vitamin E 
Deficient 

Basal Vitamin E 
Deficient 

114.4 + 10.2 

1.5 + 0.6 

5.2 + 0.4 86.0 + 20.6 

68.8 + 5.7 

21.0 + 4.32 0.61 + 0.13 

B6C3F1 BALB/c 

134.3 + 24.9 

1.5 + 0.3 

2.4 + 0.7 98.5 + 11.6 

71.2 + 10.2 

52.9 + 8.0 0.63 + 0.11 

* *

*

**

* *

** 

Age 

3 - 4 weeks old 
(Naïve) 

11 weeks old 
(8 weeks on diet) 

22 weeks old 
(19 weeks on diet) 

32 weeks old 
(29 weeks on diet) 

Basal Vitamin E 
Deficient 

Basal Vitamin E 
Deficient 

114.4 + 10.2 

1.5 + 0.6 

5.2 + 0.4 86.0 + 20.6 

68.8 + 5.7 

21.0 + 4.32 0.61 + 0.13 

B6C3F1 BALB/c 

134.3 + 24.9 

1.5 + 0.3 

2.4 + 0.7 98.5 + 11.6 

71.2 + 10.2 

52.9 + 8.0 0.63 + 0.11 
**

**

* 

* 

*

*

*

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2.3.  Level of vitamin E in the skin of B6C3F1 or BALB/c mice given basal or 
vitamin E deficient diets. Mean + SE of 3 experiments. * p<0.05, versus naive mice. 
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Figure 2.1.  Vitamin E in the skin of Balb/c mice (32 Week Old) given basal or vitamin E 
deficient diets following topical exposure to cumene hydroperoxide.  Mice were fed a 
basal or vitamin E deficient diet for 29 weeks.  Mice were painted on the dorsal area of 
the back with 12 mmol/kg cumene hydroperoxide and sacrificed 2 hours post-exposure. 
Values are means ± SEM of 3 experiments. *p<0.05 versus basal fed control mice; 
**p<0.05 versus vitamin E deficient fed control. 
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Figure 2.2. Cumene hydroperoxide induced reduction of GSH in the skin of young (A) 
and old (B) Balb/c mice given basal or vitamin E deficient diets. White bars - basal diet; 
Black bars - vitamin E deficient diet. Mice were fed a basal or vitamin E deficient diet
for 10 (young mice) or 29 (old mice) weeks.  Mice were painted on the dorsal area of the 
back with 12 mmol/kg cumene hydroperoxide and sacrificed 1 or 2 hours post-exposure.
Values are means ± SEM of 3 experiments. *p<0.05 versus basal fed control mice;
**p<0.05 versus vitamin E deficient fed control mice. 
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Figure 2.3. Total antioxidant reserve in the skin of young (A) and old (B) Balb/C mice 
given basal or vitamin E deficient diets following topical exposure to cumene 
hydroperoxide. White bars - basal diet; black bars-vitamin E deficient diet.  Mice were 
fed a basal or vitamin E deficient diet for 10 (young mice) or 29 (old mice) weeks.  Mice 
were painted on the dorsal area of the back with 12 mmol/kg cumene hydroperoxide and 
sacrificed 1 or 2 hours post-exposure. Values are means ± SEM of 3 experiments. 
ND - non-detectable. *p<0.05 versus basal fed control mice; **p<0.05 versus vitamin 
E deficient fed control mice. 
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Figure 2.4. Ascorbate in the skin of Balb/c mice (32 weeks old) given basal or vitamin E 
deficient diet (29 weeks) following topical exposure to cumene hydroperoxide. Mice 
were painted on the dorsal area of the back with 12 mmol/kg cumene hydroperoxide
and sacrificed 2 hours post-exposure. Values are means ± SEM of 3 experiments.  
ND - non-detectable; *p<0.05 versus basal fed control mice; **p<0.05 versus vitamin E 
deficient fed control mice. 
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Figure 2.5. Cumene hydroperoxide-induced accumulation of 8-hydroxy-2’- 
deoxyguanosine in the skin of young and old Balb/c mice.  White bars - 13 weeks old 
mice; black bars - 32 weeks old mice. Mice were painted on the dorsal area of the back 
with 12 mmol/kg cumene hydroperoxide and sacrificed 1 or 2 hours post-exposure. 
Values are means ± SEM of 3 experiments. *p<0.05 versus 32 week control mice. 
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Figure 2.6. Cumene hydroperoxide-induced accumulation of 8-hydroxy-2’- 
deoxyguanosine in skin of Balb/c mice (32 weeks old) given basal or vitamin E deficient 
diets.  White bars - basal diet; black bars - vitamin E deficient diet.  Mice were painted on 
the dorsal area of the back with 12 mmol/kg cumene hydroperoxide and sacrificed 1 or 2 
hours post-exposure. Values are means ± SEM of 3 experiments. *p<0.05 versus basal 
fed control mice; **p<0.05 versus vitamin E deficient fed control. 
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Figure 2.7. Skin photomicrographs of young (13 weeks old) and old (32 weeks old) 
Balb/c mice given basal diet and topically treated with cumene hydroperoxide.  A.  13 
week old control; B.  13 weeks old exposed to cumene hydroperoxide for 1 hour; C. 13 
weeks old exposed to cumene hydroperoxide for 2 hours; D.  32 weeks old control; E.  32 
weeks old exposed to cumene hydroperoxide for 1 hour; F.  30 weeks old exposed to 
cumene hydroperoxide for 2 hour.  Mice were painted on the dorsal area of the back with 
12 mmol/kg cumene hydroperoxide and sacrificed 1 or 2 hours post-exposure.  
Magnification 20X.  
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Figure 2.8. Skin photomicrographs of old (32 weeks old) Balb/c mice given basal or 
vitamin E diet and topically treated with cumene hydroperoxide.  A.  Basal diet control; 
B.  Basal diet exposed to cumene hydroperoxide for 1 hour; C.  Basal diet exposed to 
cumene hydroperoxide for 2 hours; D.  Vitamin E deficient diet control; E. Vitamin E 
deficient diet exposed to cumene hydroperoxide for 1 hour; F. Vitamin E deficient diet 
exposed to cumene hydroperoxide for 2 hours. Mice were fed a basal diet for 10 (young 
mice) or 29 (old mice) weeks.  Mice were painted on the dorsal area of the back with 12 
mmol/kg cumene hydroperoxide and sacrificed 1 or 2 hours post-exposure. Magnification 
20X. 
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Figure 2.9.  Vitamin E in the skin of C57BL/6 mice given a diet deficient in vitamin E 
(29 weeks) or mice with a genetic deletion of the α-tocopherol transporter protein (α-
TTP) following cumene hydroperoxide exposure. Mice were fed a basal or vitamin E 
deficient diet for 29 weeks, and α-tocopherol transport protein knockout mice were fed a 
basal diet for 29 weeks.  Mice were then painted on the dorsal area of the back with 12 
mmol/kg cumene hydroperoxide and sacrificed 2 hours following exposure.  Values are 
means ± SEM. *p<0.05 versus basal fed control mice; **p<0.05 versus vitamin E 
deficient fed control mice, ***p<0.05 versus α-TTP knockout control mice.   
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Figure 2.10. Cumene hydroperoxide reduced the level of GSH in the skin of C57BL/6 
Mice given a diet deficient in vitamin E or mice with a genetic deletion of the α-
tocopherol transporter protein (α-TTP). Mice were fed a basal or vitamin E deficient diet 
for 29 weeks, and α-tocopherol transport protein knockout mice were fed a basal diet for 
29 weeks.  Mice were then painted on the dorsal area of the back with 12 mmol/kg 
cumene hydroperoxide and sacrificed 2 hours following exposure.  Values are means ± 
SEM. *p<0.05 versus basal fed control mice; **p<0.05 versus vitamin E deficient fed 
control mice, ***p<0.05 versus α-TTP knockout control mice.   
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Figure 2.11. Ascorbate in the skin of C57BL/6 mice given a diet deficient  in  vitamin E 
or mice with a genetic deletion of the α-tocopherol transporter protein (α-TTP) following 
exposure to cumene hydroperoxide. Mice were fed a basal or vitamin E deficient diet for 
29 weeks, and α-tocopherol transport protein knockout mice were fed a basal diet for 29 
weeks.  Mice were then painted on the dorsal area of the back with 12 mmol/kg cumene 
hydroperoxide and sacrificed 2 hours following exposure.  Values are means ± SEM. 
*p<0.05 versus basal fed control mice; **p<0.05 versus vitamin E deficient fed control 
mice, ***p<0.05 versus α-TTP knockout control mice.   
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Abstract 

Organic peroxides, widely used in the chemical and pharmaceutical industries, can act as 

skin tumor promoters and cause epidermal hyperplasia.  They are also known to trigger 

free radical generation.  The present study evaluated the effect of cumene hydroperoxide 

(Cum-OOH) on the induction of activator protein-1 (AP-1), which is linked to the 

expression of genes regulating cell proliferation, growth, and transformation.  Previously, 

we reported that topical exposure to Cum-OOH caused formation of free radicals and 

oxidative stress in the skin of vitamin E deficient mice.  The present study used JB6 P+ 

mouse epidermal cells and AP-1 luciferase reporter transgenic mice to identify whether 

exposure to Cum-OOH in vivo cause activation of AP-1, oxidative stress, depletion of 

antioxidants, and tumor formation during two-stage carcinogenesis. In vitro studies found 

that exposure to Cum-OOH reduced the level of glutathione (GSH) in mouse epidermal 

cells (JB6 P+) and caused the induction of AP-1. Mice primed with dimethyl-

benz[a]anthracene (DMBA) were topically exposed to Cum-OOH (82.6 µmol) or 12-O-

tetradecanoylphorbol-13-acetate (TPA, 17 nmol) twice weekly for 29 weeks.  Activation 

of AP-1 in skin was detected as early as 2 weeks following Cum-OOH and TPA 

exposures.  No AP-1 expression was found 19 weeks post-initiation.  Papilloma 

formation was observed in both the DMBA/TPA and DMBA/Cum-OOH-exposed 

animals while skin carcinomas were found only in the DMBA/Cum-OOH-treated mice.  

A greater accumulation of peroxidative products (TBARS), inflammation, and decreased 

levels of GSH, vitamin E and total antioxidant reserves were also observed in the skin of 

DMBA/Cum-OOH exposed mice.  There results suggest that Cum-OOH-induced 
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carcinogenesis is accompanied by increased AP-1 activation and changes in antioxidant 

status. 
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Introduction 

Peroxide compounds yield free radicals and are widely used in industry as initiators for 

polymerization. Organic peroxides (OP) have become the subject of occupational safety 

research interest due to possible genotoxic and carcinogenic risks in the work place. 

Cumene hydroperoxide (Cum-OOH) is bulk material for production of acetone and 

phenol. Cum-OOH is also used as a catalyst for rapid polymerization and production of 

styrene and acrylic monomers, curing agents for unsaturated polyester resins, and 

intermediate for cross-linking agents (Lewis, 1993). Humans are exposed to Cum-OOH 

during manufacturing as well as in polluted urban air resulting from the photochemical 

reaction of nitrogen oxide with unsaturated hydrocarbons and peroxides present in the 

exhaust fumes of gasoline, diesel and aviation fuels. Dermal exposure to Cum-OOH 

causes a number of toxic outcomes in skin e.g. allergic and irritant dermatitis, rash, 

defattening of dermis and hair loss, burns, and epidermal hyperplasia (Adams, 1999). 

Free radical production is considered the key factor contributing to skin tumor promotion 

by OP. 

 

Alteration of Ras proteins and/or elevated levels of their expression have drastic 

consequences for growth control and cause the development of tumors in humans 

(Barbasid, 1987). Recently, the role of the transcription factor activator protein 1 (AP-1) 

has been highlighted as a mediator of growth factors, oncogenes and the tumor promoter, 

TPA. AP-1 converts extracellular signals into changes in the expression of specific target 

genes that harbor AP-1 binding sites in their promoter/enhancer regions. AP-1 consists of 

a family Jun/Fos dimers including different Jun/Fos proteins (Angel et al., 1987; Angel 
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and Karin, 1991; Hirai et al., 1989). AP-1 and its regulated gene expression is involved in 

the pre-neoplastic to neoplastic progression in different cellular models (Domann et al., 

1994; Dong et al., 1995; Huang et al., 1996; Jochum et al., 2001).  

 

Reactive oxygen species (ROS) are able to regulate AP-1 binding to the DNA. The 

application of tumor promoters to skin causes a significant reduction in antioxidant 

defense (Perchellet et al., 1987; Kisella et al., 1983; Solanki and Slaga, 1981; Amstad et 

al., 1997; Isbir et al., 2000). In the present study, we attempt to evaluate whether topical 

exposure to Cum-OOH caused tumor promotion, induction of oxidative stress and 

activation of AP-1 protein in mouse skin. JB6 P+ mouse epidermal cells and AP-1 

luciferase reporter transgenic mice were used to observe whether exposure to Cum-OOH 

caused activation of AP-1, oxidative stress, depletion of antioxidants and skin tumor 

formation during two-stage carcinogenesis. Using a mouse epidermal cell line (JB6 P+) 

transfected with an AP-1 –luciferase reporter, we tested whether exposure to Cum-OOH 

reduced the level of GSH and caused the induction of AP-1. These results suggest that 

Cum-OOH induced carcinogenesis is accompanied by the induction of oxidative stress, 

increased AP-1 activation and reduced antioxidant defense in mouse skin. 

Materials and Methods 

Chemicals 

Fatty acid-free human serum albumin (hSA), luminol, sodium dodecyl sulfate (SDS), 

cumene hydroperoxide (Cum-OOH), 12-o-tetradecanoylphorbol-13-acetate (TPA), 7,12-

dimethylbenz[α]anthracene (DMBA), acetone, guaiacol, cetylmethylammonium bromide, 

3-amino-1,2,4-triazole (3-AT), 2-thiobarbituric acid, and glutathione were obtained from 

 
 

114



www.manaraa.com

Sigma Chemical Co (St. Louis, MO). Fetal bovine serum (FBS) and L-glutamine were 

purchased from Life Technologies, Inc. (Rockville, MD). Eagle’s minimum essential 

medium (MEM) was obtained from Bio Whittaker (Walkersville, MD). Luciferase assay 

kit was purchased from Promega (Madison, WI). ThioGlo-1TM was obtained from 

Covalent Inc. (Wobum, MA). 2,2'-azobis(2-aminodinopropane)-dihydrochloride (AAPH) 

was purchased from Wako Chemicals USA, Inc. (Richmond, VA).  

Cell Culture 

The JB6 family of mouse epidermal clonal genetic variants (P+/P-) provides a suitable 

model for studying critical gene regulation events that occur during carcinogenesis. The 

JB6 P+ mouse epidermal cell line is transfected with the AP-1-luciferase reporter 

plasmids (JB6/AP). JB6/AP cells were cultured in Eagle’s MEM containing 5% fetal 

bovine serum and 2 mM L-glutamine. The cells were grown at 37°C in a 5% CO2 

atmosphere. 

Animals 

AP-1 transgenic mice were used to study tumor promotion by Cum-OOH. AP-1-

luciferase reporter transgenic mice were originally established by Rincon and Flavell 

(1994). A C57BL/6 male mouse carrying the 2x TPA response element-luciferase 

transgene was crossed with a DBA2 female (Huang et al., 1997). The offspring were 

screened for the presence of luciferase activity. Each mouse was housed in an individual 

ventilated cage under controlled environmental conditions in an AAALAC accredited 

facility. The animals were weighed biweekly and the food consumption was recorded 

monthly.  
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Assay of AP-1 Activity in vitro 

The JB6/AP cells were placed in 96-well plates in 200 µl per well of Eagle’s MEM 

supplemented with 5% fetal bovine serum and 2 mM L-glutamine. Plates were incubated 

at 37° C humidified atmosphere of 5% CO2. Twelve hours later, cells were cultured in 

Eagle’s MEM supplemented with 0.5% fetal bovine serum and 2 mM L-glutamine for 24 

hours to minimize basal AP-1 activity, and then exposed to Cum-OOH or TPA in the 

same medium to monitor the effects on AP-1 induction. The cells were extracted with 

200 µl of 1x lysis buffer provided in luciferase assay kit by the manufacture, and the 

luciferase activity was measured using luminometer (Monolight 2010, Analytical 

Luminescence Laboratory,San Diego,CA). The results are expressed as relative AP-1 

activity compared to respective controls. 

Tumor promotion experiment 

Eight-week-old AP-1 luciferase reporter-bearing female mice were randomly divided into 

six groups consisting of 8 mice in each group. The dorsal skin in the inter-scapular area 

was shaved with a surgical clipper 2 days before initiation, and animals showing no hair 

re-growth were used in the experiment. DMBA (51.2 µg dissolved in 100 µl of acetone 

for each mouse) was used as a tumor initiator and applied to skins of mice in groups 4, 5, 

and 6 (Table 1). In groups 1, 2, and 3, 100 µl of acetone was applied to mouse skins. 

Fourteen days following initiation, the mice were promoted twice a week with 17 nmol 

TPA (groups 2 and 5) or 82.6 µmol Cum-OOH (group 3 and 6) dissolved in 100 µl of 

acetone for the next 29 weeks. Negative control mice were treated with acetone alone 

(groups 1 and 4). The body weight of each animal and papillomas/carcinomas appearing 

on the shaved area of the skin were recorded at weekly intervals.  Papillomas and 
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carcinomas were distinguished by differences in physical size and characteristics.  A 

certified pathologist confirmed the presence of papillomas and carcinomas at the 

completion of the experiment.   Tumor promoting activity was evaluated by both the ratio 

of tumor-bearing mice and the number of tumors, >1 mm in diameter, per mouse. 

Animals were sacrificed by inhalation of an excess of carbon dioxide after the 

termination of the treatments. Skin flaps from the inter-scapular area of the back of mice 

(1.5 x 2.0 cm2) were excised and samples were taken for histopathology and biochemical 

analyses. Skin for biochemical studies was immediately frozen at -80°C until 

homogenized.  

Assay of AP-1 Activity in vivo 

AP-1-luciferase activity was measured in dorsal skin punch biopsy samples obtained by 

punch biopsy (1.5 mm, Acuderm, Ft. Lauderdale, Fl). Lysis buffer (Promega, 100 µl) was 

added to each skin biopsy and the tissues were lyzed overnight at 4°C. The luciferase 

activity of the tissue supernatant obtained after lysis was measured with a luminometer 

(Monolight 2010, Analytical Luminescence Laboratory, San Diego, CA). AP-1 activity 

was expressed relative to the level of luciferase activity versus control groups. Samples 

for AP-1 activity assay were collected every 4 weeks. 

Skin Histopathology and Examination 

The skin was processed after fixation in 10% neutral buffered formalin, following the 

standard operating procedures of our laboratory.  Hematoxylin and eosin stained 

histology slides were prepared for light microscopic examination.  Photomicrographs 

were prepared using an Olympus 300 double-headed microscope (Tokyo, Japan). 
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Homogenate Preparation 

The skin was excised promptly after the mice were sacrificed, and samples for biochemical 

analysis were immediately frozen at -80°C until processed.  The skin homogenates were 

prepared from frozen tissues with ice-cold phosphate-buffered saline (PBS, pH 7.4) using a 

tissue tearer (model 985-370, Biospec Products, Inc., Racine, WI).  Homogenates were 

stored at -80° C until further processed. 

Inflammatory Biomarkers Determination 

The modifying effect on inflammation induced by Cum-OOH or TPA topical application 

was determined by two biomarkers, edema formation and myeloperoxidase (MPO) 

activity. To assess the extent of Cum-OOH or TPA induced edema in mice skin 24 h after 

last treatment, a dial caliper (The Dyer Company, Lancaster, PA) was used to measure 

the skin bi-fold thickness at 3 random locations per mouse. Edema formation was 

expressed as net increase in skin bi-fold thickness between experimental and control 

(acetone/acetone) groups. For the MPO activity determination, a spectrophotometric 

assay (Shimadzu UV 160U spectrometer, Kyoto, Japan) was used in which guaiacol 

oxidation was monitored by changes of absorbance at  470 nm (ε = 26.6 mM-1cm-1) 

(Nonaka T. et al, 1992). Skin homogenates were mixed with PBS (100 mM, pH 7.4) 

containing cetylmethylammonium bromide (0.02%), guaiacol (13 mM), and 3-AT (3.75 

mM). The reaction was started by the addition of H2O2 (0.6 mM). Activity of MPO was 

calculated and expressed in nmoles of tetraguaiacol per minute per mg of protein. 

Determination of Peroxidative Products (TBARs) 

Peroxidative products were determined using the procedure described by Buege and Aust 

(1978).  The formation of thiobarbituric acid-reactive substances (TBARS) was measured 
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in skin homogenates. Tissue homogenates (0.5 mg of protein) were mixed with 1 ml 

0.67% thiobarbituric acid and 30% trichloracetic acid (1:1). The samples were heated for 

20 min at 100ºC and centrifuged for 15 min at 5,000x g. The absorbency of the 

supernatant was determined at 535 nm using a UV 160 U Shimadzu spectrophotometer 

(Kyoto, Japan). A molar extinction coefficient of ε = 1.56 x 105 M-1 cm-1 was used for 

calculations. 

Chemiluminescence Measurements of Total Antioxidant Reserve  

A water-soluble azo-initiator, 2,2' azobis(2-aminodinopropane)-dihydrochloride (AAPH), 

was used to produce peroxyl radicals (Niki, 1990). Oxidation of luminol by AAPH-derived 

peroxyl radicals was assayed by the chemiluminescence response. A delay in the 

chemiluminescence response caused by interaction of endogenous antioxidants with AAPH-

derived peroxyl radicals was observed upon addition of homogenates. Based on the known 

rate of peroxyl radical generation by AAPH, the amount of peroxyl radicals scavenged by 

endogenous antioxidants was evaluated. The incubation medium contained 0.1 M phosphate 

buffer (pH 7.4) at 37°C, AAPH (50 mM), and luminol (0.4 mM). The reaction was started 

by the addition of AAPH. A luminescent analyzer 633 (Coral Biomedical, Inc., San Diego, 

CA) was employed for determination. 

Glutathione (GSH) and protein thiols assay in cells and tissue 

Total protein sulfhydryl concentration in homogenates of skin or cells was determined 

using ThioGloTM-1, a maleimide reagent which produces a highly fluorescent product 

upon reaction with sulfhydryl groups (Shvedova et al., 2000). A standard curve was 

established by addition of GSH (0.02-1.0 µM) to 0.1 M phosphate buffer (pH 7.4) 
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containing 10 µM ThioGloTM-1. GSH content was estimated from the immediate 

fluorescence response registered upon addition of ThioGloTM-1 to a tissue or cells 

homogenate. Total protein sulfhydryls were determined from the augmentation of the 

fluorescence response after addition of SDS (4 mM) to the same homogenate. A 

spectrofluorophotometer (Shimadzu RF-5000 U, Kyoto, Japan) was employed in the 

assay (excitation 388 nm and emission 500 nm). 

Protein Assay 

Measurements of protein in homogenates of tissue and cells were conducted using a Bio-

Rad protein assay kit, cat. # 500-0006 (Richmond, CA). 

Statistics 

Data were expressed as the mean with + standard error of the mean for each group. One-

way ANOVA with Tukey test was employed to compare the responses between 

treatments. Statistical significance was set at p < 0.05. 

Results 

AP-1 Activity in vitro after Cum-OOH Exposure 

To determine whether Cum-OOH induced AP-1 activation, we incubated the JB6 cells 

with Cum-OOH or TPA (positive control). As shown on Fig. 3.1, exposure to JB6 cells to 

Cum-OOH (24 h) causes a dose-dependent activation of AP-1. JB6 cells incubated with 

50 µM, 100 µM, and 200 µM of Cum-OOH for 24 hr produced a significant 0.9-, 1.8-, 

and 2.2-fold increase of luciferase activity compare to vehicle-treated control cells, 

respectively (p< 0.05). No further AP-1 activation was observed appears after incubation  

JB6 cells with Cum-OOH (48 hours; data not shown).  
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Levels of GSH and Protein Thiols in vitro after Cum-OOH Exposure 

Levels of GSH and protein thiols were dramatically reduced after incubation of JB6 cells 

with Cum-OOH for 24 or 48 h (Figure 3.2). Incubation of JB6 cells with 50 µM, 100 µM, 

and 200 µM of Cum-OOH for 24 hr resulted in a 47%, 85%, and 91% decrease in the 

level of GSH compared to cells treated with vehicle, respectively. Exposure of JB6 cells 

to Cum-OOH (50 µM, 100 µM, 200 µM) for 48 hours resulted in a further reduction 

(59%, 93% and 95%, respectively) in GSH (Figure 3.2A) as compared to vehicle-treated 

controls.  As shown on Figure 3.2B, incubation of JB6 cells with 50 µM, 100 µM, and 

200 µM of Cum-OOH for 24 hr resulted in a 45%, 56%, and 67% decrease in the level of 

protein thiols compared to cells treated with vehicle, while exposure to Cum-OOH for 48 

hours resulted in a 50%, 70% or 73%, respectively, as compared to vehicle-treated cells.  

Effects of Cum-OOH or TPA on morphological alterations in the skin of AP-1 – 

luciferase transgenic mice.  

To determine whether AP-1 activation preceded papilloma formation during two-stage 

Cum-OOH induced cancer promotion, AP-1- luciferase reporter transgenic mice were 

used for the study. Initially, we examined the histopathological changes in the skin of 

AP-1-luciferase reporter transgenic mice 24h after the last topical application of Cum-

OOH and TPA.  We observed epidermal hyperplasia in DMBA/Cum-OOH and 

DMBA/TPA groups (29 weeks of treatment) but not in control groups given 

DMBA/acetone (Figure 3.3A and 3.3B) or acetone/acetone (data not shown). In DMBA-

initiated mice, topical treatment with Cum-OOH resulted in increased epidermal 

thickness as compared with TPA-treated mice. Histological observation of mouse skin 

exposed to DMBA/Cum-OOH displayed a marked increase in the amount of melanin, 
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moderate increase in the number and size of sebaceous gland epithelial cells, and the hair 

follicles show an activated epithelium. Both DMBA/Cum-OOH and DMBA/TPA 

applications resulted in an increase in the number of blood vessels and inflammatory 

infiltrates as compared to control (DMBA/acetone). However, accumulation of 

inflammatory cells in the skins of mice given DMBA/Cum-OOH was greater compared 

to that in the skins of mice treated with DMBA/TPA (Figure 3.3B).   

Effect of Cum-OOH or TPA Treatment on Tumor Promotion 

In terms of carcinoma incidence, high tumor promoting activity of Cum-OOH was 

observed throughout the experiment (Figure 3.4). Tumors appeared on the skin of AP-1 

transgenic mice starting from 7 weeks of treatment. Data analysis at the termination of 

the experiment (29 weeks) revealed a 75% incidence of skin carcinomas in AP-1 

transgenic mice and 20% incidence of papilloma formation after treatment with Cum-

OOH following DMBA initiation (Figure 3.4). No carcinomas were observed on the skin 

of AP-1 transgenic mice treated with TPA following initiation, and about 80% of mice 

had papillomas in this group (Figure 3.4). Cum-OOH treatment following initiation with 

DMBA resulted in 2.5+0.2 (mean + SEM, n= 6) carcinomas per mouse and 2.0+0.2 

papillomas per mouse (Figure 3.5). After TPA treatment following DMBA initiation, we 

observed 7.0+1.5 (mean + SEM, n= 6 mice) papillomas per mouse (Figure 3.5, Inset). 

Effect of Cum-OOH or TPA on AP-1 Activation in the Skin of AP-1 Luciferase  

Reporter Transgenic Mice 

Skin samples of transgenic mice were punch biopsied (1.5 mm) in the beginning of the 

experiment to determine the basal luciferase activity and then every 4 weeks after 

initiation. As shown on Figure 3.6, AP-1 activity peaked in mouse skin exposed to 
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DMBA/Cum-OOH or DMBA/TPA after 4 weeks of promotion.  Maximal AP-1 

activation was 22.4- (DMBA/Cum-OOH) or 45.2-fold (DMBA/TPA) increased as 

compared to the DMBA/acetone treated group, respectively.    AP-1 activation gradually 

declined after 8 weeks of DMBA/Cum-OOH and DMBA/TPA exposures. Interestingly, 

while AP-1 activity and papilloma formation were markedly higher in mice treated with 

DMBA/TPA (4-14 weeks of exposure), we did not observe carcinoma formation in this 

group (Figure 3.6). After 29 weeks of topical application with DMBA/Cum-OOH or 

DMBA/TPA, no differences in AP-1 activation were detected (Figure 3.6). 

Biomarkers of Inflammation in the Skin of Mice Exposed to Cum-OOH or TPA.   

We found that exposure to DMBA/Cum-OOH or DMBA/TPA  caused skin inflammation 

as determined by skin thickness and measurements of myeloperoxidase (MPO) activity.  

Topical application of DMBA/Cum-OOH or DMBA/TPA to mouse skin resulted in a 

34.8-fold or a 23.5-fold net increase, respectively, in the skin bi-fold thickness at the 

termination of the experiment (29 weeks) as compared to control (DMBA/acetone) 

(Table 3.1). Topical exposure to DMBA/Cum-OOH or DMBA/TPA resulted in 14.2-fold 

or 5.5-fold increases, respectively, in myeloperoxidase activity above the levels seen in 

the control (Table 3.1).  

Biomarkers of Oxidative Stress in the Skin of Mice Exposed to Cum-OOH or TPA.  

As shown by the data in Table 3.1, topical application of DMBA/Cum-OOH or 

DMBA/TPA induced oxidative stress in mouse skin, as indicated by the accumulation of  

peroxidative products (TBARs), depletion of total antioxidant reserve, a decrease in the 

levels of glutathione (GSH) and protein sulfhydryls groups.  After 29 weeks of treatment 

with DMBA/Cum-OOH or DMBA/TPA, the level of lipid peroxidative products in the 
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skin of AP-1- luciferase reporter transgenic mice were increased by 63.6% or 33.3% 

above the levels seen in the control (DMBA/acetone) (Table 3.1).  At the termination of 

the experiment, total antioxidant reserve levels were reduced remarkably by 85.2% or 

70.5% in skin homogenates of AP-1 transgenic mice after topical application with 

DMBA/Cum-OOH or DMBA/TPA, respectively, as compared with DMBA/acetone 

treated skin (Table 3.1).   

 

As shown in Table 3.1, after 29 weeks of treatment with DMBA/Cum-OOH or 

DMBA/TPA, the levels of GSH in the skin of AP-1 transgenic mice were decreased by 

35.1% or 11.9% as compared to DMBA/acetone treated control mice. Along with GSH 

depletion, the levels of protein thiols were decreased by 11.1% or 6.8% after DMBA/Cum-

OOH or DMBA/TPA topical application as compared to DMBA/acetone treated mice 

(Table 3.1). 

Discussion 

Chemically induced skin cancer in mice has three chronological stages, initiation, 

promotion, and progression (Bowden, et al 1995; Hennings et al., 1993). Tumor initiation 

is a rapid and irreversible process, whereas promotion is a long-term process that requires 

chronic exposure to a tumor promoter. A tumor promoter increases proliferation of 

initiated cells thereby accelerating cancer progression; however, the exact mechanism of 

promotion is more complicated (Nguyen-Ba and Vasseur, 1999).  Conversion of benign 

papillomas to malignant carcinomas occurs spontaneously during the promotion stage of 

carcinogenesis; however, this conversion occurs at a very low rate in animals undergoing 

repetitive TPA exposures after DMBA initiation (Bhasin et al., 2004).  The conversion 
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frequency of papilloma to carcinoma can be increased by exposing papilloma-bearing 

animals to progressing agents such as OP or hydroperoxides (Athar et al., 1989).   

 

Free radical formation has been shown to play a role in both initiation and promotion of 

multistage carcinogenesis (Slaga et al., 1981; Taffee and Kensler, 1986a, b; Oberley and 

Oberley, 1986).  Biological systems can have an abundance of free radical species as a 

result of normal metabolic pathways or as a result of exposure to chemical carcinogens 

(Perchellet and Perchellet, 1989; Sun, 1990).  The effectiveness of the OP and 

hydroperoxides as progressing agents is related to the type of radicals produced (Kensler 

et al., 1995).  Previous work by our lab has shown that exposure to Cum-OOH results in 

the production of two lipid-derived radical species which were detectable as early as 30 

minutes following exposure and determined to be methyl and methoxyl radicals resulting 

from the metabolic oxidation of Cum-OOH (Shvedova et al., 2002).  These radicals are 

able to interact with DNA causing oxidative damage (Floyd, 1982; Sultana et al., 1995), 

which may contribute to increased malignant transformation (O’Connell et al., 1986), and 

alterations affecting the antioxidant defense system of the organs and tissue (Taffee and 

Kensler, 1986a, b; Alam et al., 2000). Radical production influences a number of genes 

and signal transduction pathways with the most significant modifications occurring in the 

MAP kinase/ AP-1 pathway (Remacle et al., 1995; Allen et al., 2000; Cimino et al., 1997; 

Dhar et al., 2002).  

 

Changes in the level of AP-1 activity have been correlated to different stages of 

melanoma development and progression (Angel et al., 2001).  A well-known oncogenic 
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stimulator, 12-O-tetradecanoylphorbol-13-acetate (TPA), activates protein kinase C and, 

subsequently, the transcription factor AP-1 (Angel et al., 2001).  Cum-OOH exposure has 

been shown to result in a concentration-dependent activation of cytosolic phopholipase 

A2 (cPLA2) in Her14 fibroblasts.  PLA2 has been implicated in cellular injury and 

hydrolyses of oxidation sensitive arachidonic acid (van Rossum et al., 2004).  Enhanced 

conversion of arachidonic acid to prostaglandins via cyclooxygenase has been shown to 

be a potential contributor to the development of skin cancers (An et al., 2002).  COX-2 

overexpression has been linked to the pathophysiology of inflammation and cancer.  

COX-2 expression has been demonstrated to correlate with tumor proliferation and 

promotion (Chinery et al., 1999).  Benign papillomas have been shown to have COX-2 

expression localized perinuclear and cytoplasmically; while carcinomas have more 

intense and stronger COX-2 expression found within the tumor stroma and throughout 

the granular and spinous layers of tumors (An et al., 2002).  Cum-OOH exposure was 

shown to induce human keratinocyte cells (HaCat) to release prostaglandin E2.  COX-2-

specific inhibitors have been found to suppress the synthesis and release of 

prostaglandins induced by exposure to Cum-OOH (Shvedova et al., 2004).  We found 

that animals exposed to DMBA/TPA had higher AP-1 activation along with increased 

papilloma formation compared to the animals treated with DMBA/Cum-OOH.  Exposure 

to DMBA/Cum-OOH caused carcinoma formation not seen in mice treated with 

DMBA/TPA.  The observed carcinomas in DMBA/Cum-OOH treated mice appeared to 

result from the malignant conversion of benign papillomas to carcinomas which possibly 

occurred via a COX-2-dependent pathway that was not entirely dependent upon AP-1 

activation.   

 
 

126



www.manaraa.com

Another possible mechanism by which DMBA/Cum-OOH papillomas may be 

transformed from benign papillomas to malignant carcinomas may be due to excessive 

radical production and subsequent DNA damage.  The previous study revealed oxidative 

DNA damage in older mice (32 weeks old) exposed to Cum-OOH (Figure 2.5, 2.6).  As 

the animals age throughout the duration of the experiment, increased oxidative DNA 

damage may be occurring thereby resulting in the increased malignant conversion of 

papillomas to carcinomas. 

 

Inflammation and oxidative stress are also very closely associated with modifying effects 

on tumor development (Nakamura et al., 2000).  OP, e.g. Cum-OOH, have been shown to 

cause tumor promotion following topical exposure to murine skin (Slaga et al., 1981; 

Athar et al., 1989; Timmins and Davies, 1993).  Application of free radical-scavenging 

compounds, e.g. antioxidants, can affect the cancer promotion stage (Perchellet and 

Perchellet, 1989; Kensler and Taffe, 1986; Timmins and Davies, 1993) indicating the role 

of free radicals during tumor promotion and development.  Following DMBA/Cum-OOH 

exposure, we found changes in the oxidative capacity in the skin of animals as indicated 

by decreases in GSH, and total antioxidant reserves.  Increased inflammation, e.g. 

increases in skin bi-fold thickness, neutrophil infiltration and elevated MPO activity, 

were also seen to a higher extent in DMBA/Cum-OOH treated mice compared to 

DMBA/TPA animals.  . 

 

From the current results, papillomas appeared on the skin of AP-1 transgenic mice 

starting from 7 weeks of DMBA/TPA treatment, and from week 11 of treatment with 
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DMBA/Cum-OOH. The growth, external appearance and number of tumors were 

different between the two groups (Figure 3.5). Moreover, at the end of the experiment 

(week 29), 2.5+0.2 tumors found in AP-1 mice were malignant after treatment with 

DMBA/Cum-OOH, whereas no carcinomas were detected in DMBA/TPA treated 

animals. In conclusion, we found that activation of AP-1 in skin was elevated as early as 

2 weeks following DMBA/Cum-OOH and DMBA/TPA exposures.  Papilloma formation 

was observed in both the DMBA/TPA and DMBA/Cum-OOH-exposed animals while 

skin carcinomas were found only in the DMBA/Cum-OOH-treated mice.  A greater 

accumulation of peroxidative products (TBARS), inflammation, and decreased levels of 

GSH, and total antioxidant reserves were observed in the skin of DMBA/Cum-OOH-

exposed mice.  There results suggest that Cum-OOH-induced carcinogenesis is 

accompanied by increased AP-1 activation and changes in antioxidant status. 
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Tables and Figures 

 
 
 
 
 
 
 
 

GSH, 
nmol/mg protein 25.7+0.2

Acetone
/Acetone
(Group 1)
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Table 3.1.  Biomarkers of inflammation and oxidative stress in skin of AP-1mice after 29 
weeks of Cum-OOH-induced or TPA-induced tumor promotion. Values are 
means +/- SEM. *p<0.05 versus acetone/acetone treated mice ; αp < 0.05 versus
DMBA/acetone treated mice;   βp<0.05 versus acetone/TPA treated mice; µp<0.05 versus 
acetone/Cum-OOH treated mice. ND – non-detectable. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

129



www.manaraa.com

 
 
 
 
 
 

0.6

1

1.4

1.8

2.2

2.6
R

el
at

iv
e 

L
uc

ife
ra

se
A

ct
iv

ity

*

*

*

*
**

*****

0 50 100 200

Cum-OOH, µM TPA, µM

250.6

1

1.4

1.8

2.2

2.6
R

el
at

iv
e 

L
uc

ife
ra

se
A

ct
iv

ity

*

*

*

*
**

*****

0 50 100 200

Cum-OOH, µM TPA, µM

25

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1. Cum-OOH-induced AP-1 activation in JB6 P+ cells.  JB6 P+ cells were 
cultured in Eagle’s MEM supplemented with 0.5% fetal bovine serum and 2 mM L-
glutamine for 24 hours to minimize basal AP-1 activity, and then exposed to Cum-OOH 
(0, 50, 100, or 200 µM) or TPA (25 µM) in the same medium for 24 hours to monitor the 
effects on AP-1 induction. The cells were extracted with 200 µl of 1x lysis buffer 
provided in luciferase assay kit by the manufacture.  Values are means + SEM of 3 
experiments.  *p < 0.05 vs control cells, **p<0.05 versus 50 µM Cum-OOH exposed cells, 
***p<0.05 versus 100 µM Cum-OOH exposed cells. 
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Figure 3.2. Effect of Cum-OOH on the levels of GSH and protein thiols in JB6 P+ cells.  
JB6 P+ cells were cultured in Eagle’s MEM supplemented with 0.5% fetal bovine serum 
and 2 mM L-glutamine for 24 hours to minimize basal AP-1 activity, and then exposed to 
Cum-OOH (0, 50, 100, or 200 µM) or TPA (25 µM) in the same medium for 24 or 48 
hours.  Following exposure, cells were washed with PBS and frozen at –800 C.  Thio-
Glo-1 was used to measure changes in GSH and protein thiol levels as a result of 
exposure.  A - GSH; B - Protein thiols. White bars: 24 hours post-exposure; Pattern bars: 
48 hours post-exposure.  Values are means + SEM of 3 experiments.  *p < 0.05 vs control 
cells, **p<0.05 versus 50 µM Cum-OOH exposed cells, ***p<0.05 versus 100 µM Cum-
OOH exposed cells. 
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Figure 3.3. Morphological alterations and tumor promotion in skin of AP-1 transgenic 
mice treated with DMBA/Cum-OOH or DMBA/TPA (29 weeks). Mice were exposed to 
DMBA (51.2 µg dissolved in 100 µl of acetone for each mouse), which was used as a 
tumor initiator.  Fourteen days following initiation, the mice were promoted twice a week 
with acetone, 17 nmol TPA, or 82.6 µmol Cum-OOH dissolved in 100 µl of acetone for 
29 weeks.  Skin sections were collected in formalin for histological evaluation at the 
completion of the experiment. A – DMBA/acetone; B – DMBA/TPA; C – DMBA/Cum-
OOH; Magnification x 4. 
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Figure 3.4. Incidence of tumors in AP-1 transgenic mice treated with DMBA/Cum-OOH 
or DMBA/TPA.  Mice were exposed to DMBA (51.2 µg dissolved in 100 µl of acetone 
for each mouse), which was used as a tumor initiator.  Fourteen days following initiation, 
the mice were promoted twice a week with acetone, 17 nmol TPA, or 82.6 µmol Cum-
OOH dissolved in 100 µl of acetone for 29 weeks. The papillomas/carcinomas appearing 
on the shaved area of the skin were recorded at weekly intervals. Pink circles - percentage 
of animals having one or more TPA-induced papillomas; aqua squares - percentage of 
animals having one or more Cum-OOH-induced papillomas; green triangles – percentage 
of animals having one or more Cum-OOH-induced carcinomas, yellow circles-percentage 
of animals having one or more acetone-induced papillomas or carcinomas. Values are 
means of 6 mice per group. 
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Figure 3.5. Number of tumors in AP-1 transgenic mice treated with DMBA/Cum-OOH 
and DMBA/TPA; Inset - number of papillomas per mouse.  Mice were exposed to 
DMBA (51.2 µg dissolved in 100 µl of acetone for each mouse), which was used as a 
tumor initiator.  Fourteen days following initiation, the mice were promoted twice a week 
with acetone, 17 nmol TPA, or 82.6 µmol cumene hydroperoxide dissolved in 100 µl of 
acetone for 29 weeks.  The papillomas/carcinomas appearing on the shaved area of the 
skin were recorded at weekly intervals. Pink circles - number of TPA-induced 
papillomas/carcinomas per mouse; aqua squares - number of Cum-OOH-induced 
papillomas per mouse; aqua triangles - number of Cum-OOH-induced carcinomas per 
mouse.  Values are means of 6 mice per group. 
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Figure 3.6. AP-1 transactivation in the skin of AP-1 - luciferase transgenic mice treated 
with DMBA/Cum-OOH and DMBA/TPA.  Mice were exposed to DMBA (51.2 µg 
dissolved in 100 µl of acetone for each mouse), which was used as a tumor initiator.  
Fourteen days following initiation, the mice were promoted twice a week with acetone, 
17 nmol TPA, or 82.6 µmol Cum-OOH dissolved in 100 µl of acetone for the next 29 
weeks. AP-1-luciferase activity in the skin was measured by dorsal skin punch biopsy 
using biopsy punch every 4 weeks. 
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Abstract 

The skin is continuously exposed to a variety of hazardous environmental insults, such as 

ultraviolet light, ozone, and ionizing radiation.  These exposures can result in the 

production of free radicals and reactive oxygen species (ROS), which have been 

implicated in the development of inflammatory skin disorders, skin cancer, cutaneous 

autoimmune diseases, phototoxicity, and premature aging.  A variety of antioxidant 

defense mechanisms are present in skin to cope and prevent oxidative injury; however, 

when environmental stressors, e.g. UV irradiation, overwhelm these defense mechanisms, 

skin injury may occur.  We hypothesized that solar light exposure, in particular a dose not 

causing burns, results in the formation of free radicals and oxidative stress with depletion 

of antioxidants, accelerated lipid peroxidation and DNA damage.  To experimentally 

assess whether simulated solar light (SSL) caused these alterations, SKH-1 hairless mice 

were exposed to SSL (13.7 mJ·CIE/cm2/day) for 1 hour, 5 days a week for 3 weeks.  

Twenty-four hours following the last exposure, mice were sacrificed and the skin was 

evaluated for changes in several parameters of oxidative stress as well as 

histopathological alterations. A significant amount of GSH oxidation as well as decreases 

in the levels of protein thiols, total antioxidant reserves, and vitamin E were observed as a 

result of exposure to SSL. A significant increase in lipid peroxidation and elevated 

myeloperoxidase activity (MPO), indicating infiltration of neutrophils into the skin, were 

observed following SSL irradiation. Pyrimidine dimer formation indicating DNA damage 

was detected in the skin following SSL irradiation.  Histological observation of the skin 

following SSL irradiation revealed an increase in skin thickness and inflammatory cell 

infiltration. We concluded that DNA damage, oxidative stress and antioxidant depletion 
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as observed by decreases in GSH, vitamin E, and total antioxidant reserves, along with 

inflammatory cell infiltration in the skin of SKH-1 following SSL exposure contributed 

to the detrimental effects of SSL. 
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Introduction 

Solar radiation reaching the earth consists mainly of UVA (315-400 nm) and UVB (280-

315nm) light and is a major environmental and occupational exposure risk.  The skin is 

easily and constantly exposed to air, solar radiation, and ozone.  As a result of reduction 

of the stratospheric ozone layer, there has been an increase in dermal exposure to 

ultraviolet radiation (UVR) accompanied by an increase in the development of associated 

skin diseases (Miyachi et al., 1995; Jurkiewcz and Buettner, 1994).  UVR has been 

shown to be a source of exogenous and environmental ROS.  ROS, such as superoxide 

anion, hydroxyl radical, hydrogen peroxide and molecular oxygen, have been shown to 

be involved in cell proliferation, apoptosis, immune responses, and cell differentiation 

(Trouba et al., 2002); however, overproduction of ROS can result in the development and 

progression of a variety of skin maladies in which inflammatory mediators are implicated 

(Alder et al., 1999).  An upregulation in the production and release of pro-inflammatory 

cytokines, such as IL-1, IL-6, IL-8 and TNF-α, have been shown to occur due to 

oxidative stress (Alder et al., 1999; Effendy et al., 2000).  The presence of these 

inflammatory mediators are able to stimulate the production and release of other 

chemokines/cytokines and further propagate and amplify the inflammatory response in 

skin (Effendy et al., 2000).   

 

The skin has a developed and sophisticated system to withstand oxidative damage 

(Beckman and Ames, 1998).  This complex antioxidant defense system detoxifies ROS 

via the reduction of antioxidants that have been shown in several cases to inhibit cytokine 

production by intracellular thiols.  Glutathione (GSH) is an important sulfur-containing 
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antioxidant which maintains the intracellular redox status by efficiently regulating the 

cellular defenses protecting against the development of oxidative stress by directly 

scavenging ROS (Schafer and Buettner, 2001; Sies, 1999; Kohen and Nyska, 2003; 

Haddad, 2000, 2002a, 2002b; Hudson, 2001; Petroff et al., 2001).  Cellular depletion of 

GSH has been shown to increase ROS formation, thereby resulting in enhanced cytokine 

secretion (Gossett et al., 1999).  The generation of free radicals and subsequent oxidative 

stress are considered to be the central mechanisms involved in the development of a 

variety of skin disorders, such as photosensitivity and phototoxicity, photoaging, 

carcinogenesis, and cutaneous autoimmune diseases (Lopez-Torres et al., 1998; Halliwell 

and Cross, 1994; Nachbar and Korting, 1995).   

 

Elevated ROS have been shown to induce lipid peroxidation, DNA mutations and 

damage, enzymatic activation or deactivation, protein oxidation and/or degradation found 

in animal and human tissues (Miyachi and Imamura, 1990; Shindo et al., 1994; 

Matsumoto et al., 1991; Chew et al., 1988; Record et al., 1991).  To evaluate whether 

simulated solar light (SSL) induced oxidative stress and damage in the skin of SKH-1 

hairless mice, we assessed: 1) accumulation of peroxidative products, changes in GSH, 

oxidation of protein thiols, vitamin E, and total antioxidant reserves, 2) DNA oxidative 

damage assessed by the formation of pyrimidine dimers, and 3) morphological alterations 

and inflammation evaluated by neutrophilic infiltration along with myeloperoxidase 

activity assayed in the skin of mice irradiated with SSL.  
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Materials and Methods 

Chemicals 

Fatty acid-free human serum albumin (hSA), luminol, sodium dodecyl sulfate (SDS), 

thiobarbituric acid, trichloroacetic acid, glutathione, cetylmethylammonium bromide, 

guaiacol, 3-AT, thiobarbituric acid, tricholoracetic acid, ammonium formate, and 

orthophosphoric were purchased from Sigma Chemicals Co. (St. Louis, MO). Methanol, 

ethanol, hexane (HPLC grade), and water (HPLC grade) were purchased from Aldrich 

Chemical Co. (Milwaukee, WI). ThioGlo-1TM was obtained from Covalent Inc. (Wobum, 

MA). 2,2’-azobis (2-amonodinopropane)-dihydrochloride (AAPH) was purchased from 

Wako Chemicals USA Inc. (Richmond, VA).  10% neutral buffered formalin was 

purchased from Fisher Scientific (Pittsburgh, PA). 

Animal Exposures to Simulated Solar Light (SSL) 

Female SKH-1 hairless mice (8 weeks old) were exposed to SSL as described by Sams et 

al (2002).  Briefly, animals were exposed to light emitted from a 6.5-kW xenon arc lamp 

(Atlas Electric Devices, Chicago, IL) filtered through a WG320 glass filter (Schott Glass 

Technologies, Durea, PA).  Animals were exposed unrestrained in Lenderking cages to 

an average of 1.52 X 10-5 W/cm2 UVB and 3.15X10-4 UVA W/cm2 for an average 

UVA:UVB ratio of 20.9:1.  Mice (n=6 mice per group) were exposed to 13.7 

mJ·CIE/cm2/day simulated solar light for 1 hour 5 days a week for 3 weeks.   

Skin Collections and Preparation of Homogenates 

Twenty-four hours following the last treatment, the mice were sacrificed.  Skin flaps 

from the intrascapular area of the back of mouse were excised.  Skin was taken for 

biochemical analysis and was immediately frozen at –80° C until processed. The skin 
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homogenates for biochemical assays were prepared from frozen tissues with ice-cold 

phosphate-buffered saline (PBS, 7.4) using a tissue tearer (model 985-370, Biospec 

Products, Inc., Racine, WI).   

Skin Preparation for Histopathological Evaluation  

Skin sections for histopathological evalutation were fixed in 10% neutral buffered 

formalin, and then embedded in paraffin.  Skin sections were cut at 5-6 µm, mounted on 

silanized slides, dewaxed in xylene, dehydrated through an ethanol series, and stained 

with hematoxylin and eosin.  Photomicrographs were prepared using an Olympus 300 

double-headed microscope (Japan). 

Fluorescence Assay for Low Molecular Weight Thiols and Protein Sulfhydryls 

Low molecular weight thiols and protein sulfhydryl concentration in skin homogenates was 

determined using ThioGloTM-1, a maleimide reagent, which produces a highly fluorescent 

adduct upon its reaction with sulfhydryl groups (Shvedova et al., 2000).  Low molecular 

weight thiol content was estimated by an immediate fluorescence response registered upon 

addition of ThioGloTM-1 to the skin homogenate.  Protein sulfhydryls were determined as 

an additional increase in fluorescence response after addition of SDS (4 mM) to the same 

skin homogenate.  A standard curve was established by addition of GSH (0.04 - 4 µM) to 

100 mM disodium phosphate buffer (pH 7.4) containing 10 µM ThioGloTM-1 (DMSO 

solution). A CytoFluor multiwell plate reader Series 4000 (Applied BioSystems, Foster 

City, CA) was employed for the assay of fluorescence using excitation at 360/40 nm and 

emission at 530/25 nm with a gain of 50.  The data obtained were exported and analyzed 

using CytoFluor Software (Applied BioSystems, Foster City, CA).  
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Chemiluminescence Measurements of Total Antioxidant Reserve 

A water-soluble azo-initiator, 2,2'-azobis (2-aminodinopropane)-dihydrochloride 

(AAPH), was used to produce peroxyl radicals (Niki, 1990). Oxidation of luminol by 

AAPH-derived peroxyl radicals was assayed by chemiluminescence in the presence of 

luminol. A delay in the chemiluminescence response produced by the interaction of 

endogenous antioxidants with AAPH-derived peroxyl radicals was observed upon 

addition of the skin homogenates. Based on the known rate of peroxyl radical generation 

by AAPH, the amount of peroxyl radicals scavenged by endogenous antioxidants was 

evaluated. The incubation medium contained 0.1 M phosphate buffer (pH 7.4) at 37oC, 

AAPH (50 mM), and luminol (0.4 mM). The reaction was started by the addition of 

AAPH. The luminescent analyzer 633 (Coral Biomedical, Inc., San Diego, CA) was 

employed for the determination. 

HPLC Assay of α-Tocopherol  

α−Tocopherol from skin homogenates was extracted using the procedure described by 

Lang et al. (1986). A Waters HPLC system with an HP ODS Hypersil column (5 µm, 200 

mm x 4.6 mm) was employed to measure α-tocopherol (Waters Associates, Milford, 

MA). A Waters HPLC system with a 717 autosampler, Waters 600 controller pump and a 

474 fluorescence detector was used. The wavelengths employed in the assay were 292 

nm (excitation) and 324 nm (emission). Eluent was methyl alcohol (CH3OH) and the 

flow rate was 1 ml/min. Under these conditions, the retention time for α- tocopherol was 

8.5 min. The data acquired were exported from the Waters 474 detector using 

Millennium 2000 software for further analysis (Waters Associates, Milford, MA). 
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Measurements of Peroxidative Products 

Accumulation of lipid peroxidation products reacting with 2-thiobarbituric acid (TBARS) 

in skin homogenates was measured spectophotometrically using a method described by 

Buege and Aust (1978). Skin homogenates containing 0.5 mg of protein were mixed with 

1 ml of 0.67 % thiobarbituric acid and 30 % trichloroacetic acid (1:1).  The samples were 

heated at 100ºC for 20 minutes and then centrifuged for 15 minutes at 5,000 x g.  The 

absorbency of the supernatant was determined at 535 nm using a 2401-PC Shimadzu 

spectrophotometer (Kyoto, Japan) interfaced with a Dell OptiPlex GX 400 personal 

computer. A molar extinction of 1.56 x 105 M-1 cm-1 was used for calculations.   

Measurement of Myeloperoxidase Activity (MPO) 

To measure changes in myeloperoxidase activity (MPO) in skin homogenates, a 

spectrophotometric assay was used (Nonaka et al., 1992).  Skin homogenates were mixed 

with PBS (100 mM, pH 7.0) containing cetylmethylammonium bromide (0.02%), 

guaiacol (13 mM), and 3-AT (3.75 mM).  The reaction was started by the addition H2O2 

(0.6 mM).  Oxidation of guaiacol was monitored by changes of absorbance at 470 nm (ε 

= 26.6 mM-1cm-1) using as Shimadzu UV 160U spectrometer (Kyoto, Japan).  Activity of 

MPO was calculated and expressed as nmoles of tetraguaiacol per minute per mg of 

protein. 

Determination of Pyrimidine Dimer Formation 

Pyrimidine dimer formation was determined using a method adapted from Xu et al. 

(2000).  Briefly, DNA was isolated as described by Bykov et al. (1998) and hydrolyzed to 

bases.  32P was then attached to the 5’-position of the ribose using 32P-ATP and 

polynucleotide kinase.  This results in 32P labeling of the pyrimidine dimers.  These 
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labeled pyrimidine dimers are then detected by HPLC.  Gradient elution with of buffer 

(0.5 M ammonium formate, 20 mM orthophosphoric acid, pH 4.6) mixed with methanol 

was used to separate the photoproducts.  The flow rate through the column (Luna C18     

2 X 250 mm 5 µm particle size; Phenomenex Torrance, CA) was 0.2 ml/min. 

Protein Assay 

Measurements of protein in homogenates of tissue and cells were conducted using a Bio-

Rad protein assay kit, cat. # 500-0006 (Richmond, CA). 

Statistics 

Data were expressed as the mean ± standard error of the mean for each group. One-way 

ANOVA was employed to compare the responses between treatments. Statistical 

significance was set at p < 0.05. 

Results 

GSH and Protein Thiol Levels in Skin of Mice following Exposure to SSL 

In order to determine the cellular redox status of the skin following exposure to SSL, the 

level of cellular thiols were measured.  Addition of Thio-Glo-1TM to skin homogenates 

produces an instantaneous increase in fluorescence as a result of the formation of GSH-

ThioGlo-1TM reaction products.  No change in the intensity of this response was observed 

unless SDS was added to the incubation system.  Addition of SDS causes protein  

sulfhydryls groups to unfold and produces a slow increase in the observed fluorescence.  

The increasing fluorescence levels off 45-60 minutes following the addition of SDS.  The 

latter fluorescence is a result of the interaction of protein sulfhydryls groups with Thio-

Glo-1TM (Shvedova et al., 2000).  As shown in Figure 4.1A, exposure to SSL caused a 
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significant 24.6% (p<0.05) reduction in the level of GSH as compared to controls.  SSL 

exposure also caused a significant reduction (p<0.05) in the level of protein thiols found 

in the skin of SKH-1 hairless mice (Figure 4.1B). 

α-Tocopherol Levels in the Skin of Mice Irradiated with SSL   

Measurements of the lipid-soluble antioxidant, α-tocopherol, were assessed by HPLC. 

Assay of the skin homogenates revealed that exposure of SKH-1 mice to SSL caused a 

significant 26% decrease (p<0.05) in the level of α-tocopherol as compared to those 

found in the skin of control mice (Figure 4.2). 

Total Antioxidant Reserve Levels in the Skin of Mice Exposed to SSL 

To assess changes in total antioxidant reserve in the skin of SKH-1 mice following SSL 

exposure a luminol-enhanced chemiluminescence assay was applied.  A water-soluble 

azo-initiator, AAPH, was used to produce peroxyl radicals at a constant rate (Niki, 1990).  

Interaction of the peroxyl radicals generated by AAPH with luminol in phosphate buffer 

(0.1M, pH 7.4 at 37º C) produced a characteristic luminol response (Figure 4.3, Inset).  

The addition of skin homogenate to the incubation system resulted in a lag period during 

which the chemiluminescence response was not observed.  Skin homogenates from 

control animals produced a greater lag period than skin homogenates from the SSL 

irradiated mice.  This lag period results because of the competition of endogenous skin 

antioxidants with luminol for the AAPH-derived peroxyl radicals (Kagan, 1998).  We 

observed that total antioxidant reserve was significantly (p<0.05) decreased by 55.8% in 

skin of mice exposed to SSL as compared to controls (Figure 4.3). 
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Peroxidative Products in Skin of Mice Exposed to SSL 

Decreases in vitamin E levels are often accompanied by increases in lipid peroxidation.  

A significant increase in the level of lipid peroxidative products was observed following 

exposure to SSL.  In particular, the skin of mice irradiated with SSL had 45.7% more 

accumulated lipid peroxidative products (TBARS) as compared to control animals 

(Figure 4.4).   

Pyrimidine Dimers Formed as a Result of SSL Exposure 

The formation of pyrimidine dimers was used to determine DNA oxidative damage after 

SSL exposure.  We found that exposure to SSL resulted in the formation of DNA 

pyrimidine dimers (92 pg/µg) while no pyrimidine dimers were detected in the skin of 

control animals (Figure 4.5). 

Histological Evaluation of Murine Skin Following Exposure to SSL 

Examination of SKH-1 mouse skin following exposure to SSL revealed an increase in 

skin thickness as a result of SSL exposure (Figure 4.6).  SSL irradiation also induced the 

recruitment and infiltration of inflammatory cells, particularly neutrophils, (Figure 4.6B) 

that were not seen in control skin (Figure 4.6A). 

Myeloperoxidase Activity in Skin of Mice Exposed to SSL 

Myeloperoxidase activity was used to quantitatively assess the inflammatory neutrophilic 

response in the skin of SKH-1 mice after exposure to SSL.  We found a significant 

increase (194.5%; p<0.05) in myeloperoxidase activity observed in the skin of SKH-1 

mice post-treatment with SSL as compared to the control group (Figure 4.6C).   
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Discussion 

Excessive exposure to ultraviolet light can cause both acute and chronic skin damage 

(Miyachi, 1987).  Acute dermal exposure to ultraviolet light has a variety of side effects 

known as erythema, inflammation, and/or sunburn while chronic UV exposure can cause 

pigmentary changes, premature photoaging, and an increased risk for the formation of 

cutaneous melanoma and nonmelanoma skin cancer (Fuchs and Kern, 1998; Kligman and 

Kligman, 1986; Longstreth et al., 1998).  The combination of UVA (315-400 nm) and 

UVB (280-315nm) exposure has previously been shown to directly cause DNA damage, 

increased generation of free radicals, and induce the expression and release of 

inflammatory mediators (Herrling et al., 2003).   

 

Measurable edema dose (MEDbiol) is the dose of SSL causing a significant increase in 

skin-fold thickness of exposed mice.  The dose we used in this study (13.7 

mJ·CIE/cm2/day) was below the irradiation level (0.2 MEDbiol/day) with no appearance of 

edema in naïve SKH-1 mice (Sams II et al., 2002).  Treatment of mice with a 

suberythemal dose of UV light has been shown to cause a thickening of the epidermis 

(Berton et al., 1996; Sams II et al., 2002).  The observed thickening of the epidermis is an 

adaptive skin response to UV light (Sams et al., 2002).  Sams et al. (2002) found that 

exposure of SKH-1 mice with a similar dose range of SSL (14 mJ·CIE/cm2/day, 5 

days/week for 6 weeks) caused a significant increase in the dose of SSL required to 

induce edema (90 mJ to 180 mJ·CIE/cm2).  In our study, when SKH-1 mice were exposed 

to SSL (1 hour, 5 days a week for 3 weeks; 20.9:1 UVA: UVB), we also observed an 

increase in skin thickness as a result of UV exposure.  This increase in skin thickness was 
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accompanied by neutrophil recruitment into the dermal tissue as well as an increase in 

myeloperoxidase activity. 

 

It has been previously shown that exposure of dermal tissue ex vivo or in vivo to UV light 

resulted in the generation of free radicals (Black, 1987; Darr and Fridovich, 1994; 

Jurkiewicz and Buettner, 1994).  UV light has been found to produce ESR detectable 

lipid-derived free radicals in intact skin (Jurkiewicz and Buettner, 1994). The presence 

and formation of ROS is able to damage biomolecules (Kvam and Dhale, 2003) during 

cellular oxidative stress (Darr and Fridovich, 1994).  It has also been demonstrated that 

UV light-induced ROS were also able to cause structural and functional alterations in 

cutaneous proteins, e.g. collagen, elastin and glycosaminoglycans, probably contributing 

to dermal phototoxicity and photoaging of the skin (Carbonare and Pathak, 1992).    

 

It is interesting to note that vitamin E, a well known potent lipid soluble antioxidant, has 

been shown to be able to generate free radicals after UV light exposure in the skin.  

Kagan et al. (1992) found that α-tocopheroxyl radicals are capable of being generated 

directly by solar UV light.  This formation of the α-tocopheroxyl radicals along with 

other ROS formed by UV light were subsequently reduced by GSH and ascorbate which 

donate a hydrogen atom to recycle α-tocopheroxyl radicals back to α-tocopherol.   

 

The complex antioxidant network present within the skin is able to prevent UV damage 

induced by ROS (Catani et al., 2001).  The overproduction of ROS either directly by 

UVR or via vitamin E oxidation is able to overwhelm the total antioxidant capacity of the 
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skin thereby resulting in oxidative stress.  The synergistic GSH and ascorbate-dependent 

recycling of vitamin E (Packer, 1991; Martensson et al., 1991; Kagan and Packer, 1994; 

Guo and Packer, 2000; Shvedova et al., 2000; Shvedova et al., 2001) results in the 

depletion of low molecular weight antioxidants of the skin.  We observed that exposure 

to SSL induced oxidative stress evaluated by decreases in GSH, vitamin E, and total 

antioxidant reserves, and caused the accumulation of peroxidative products found in the 

skin of SKH-1 mice. This decrease in antioxidant capabilities in the skin promotes ROS-

dependent oxidative protein damage, DNA modification, and lipid peroxidation, and also 

contributes to the release of inflammatory mediators (Catani et al., 2001).  The 

compromise of antioxidant capabilities, particularly depletion of vitamin E in the tissue 

also affects the skin’s susceptiblity to lipid peroxidation as has been observed after 

exposure to other chemicals and mixtures (metal working fluid) (Shvedova et al., 2002a, 

b). 

 

DNA is able to directly absorb light within the UVB and UVC regions of the spectra 

(245-290 nm).  The outer layers of the skin prevent UVC from reaching the proliferating 

cells in the epidermis; however, UVB is capable being absorbed by DNA thus causing 

damage directly.  The UVA and UVB components of solar radiation have also been 

shown to be able to interact with endogenous skin compounds, e.g. α-tocopherol, present 

within the skin and produce ROS which are capable of damaging DNA via oxidation 

(Ahmed, 1999; Berneburg et al., 1999; Kvam and Tyrrell, 1997).  Cyclobutane 

pyrimidine dimers are the most common form of UV-induced DNA base damage that 

occurs between C-4 and C-5 carbons of adjacent thymine or cytosine residues.  In our 
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study, we observed a significant increase in the formation of pyrimidine dimers that 

probably results from the direct interaction of SSL and DNA.  

 

Short-term exposure to low-dose SSL has been shown to result in the formation of ROS 

(Black, 1987; Darr and Fridovich, 1994; Jurkiewicz and Buettner, 1994).  ROS-induced 

depletion of antioxidants, and lipid peroxidation which subsequently trigger skin 

inflammation.  We have also demonstrated that SSL affects antioxidant balance, caused 

the accumulation of lipid peroxidative products, oxidized DNA and triggered dermal 

inflammation.  The data support the hypothesis that oxidative stress is an important 

mechanism for UV light-induced skin injury found even during relatively short-term 

UVR. The combination of DNA modifications along with chronic inflammation found 

due to not only short but long-term SSL exposure could contribute to dermal toxicity 

potentially leading to the initiation, promotion, and progression of skin cancer.   

 
 

156



www.manaraa.com

Figures 

 

 

 

 

 

 

 

 

 

 

 

 

G
SH

, n
m

ol
/m

g 
pr

ot
ei

n

*

Control + SSL
0

5

10

15

20

25

0

5

10

15

20

25

30

35

Pr
ot

ei
n 

T
hi

ol
s, 

nm
ol

/m
g 

pr
ot

ei
n

*

Control + SSL

A B

G
SH

, n
m

ol
/m

g 
pr

ot
ei

n

*

Control + SSL
0

5

10

15

20

25

0

5

10

15

20

25

30

35

Pr
ot

ei
n 

T
hi

ol
s, 

nm
ol

/m
g 

pr
ot

ei
n

*

Control + SSL

A B

Figure 4.1.  Effects of simulated solar light on the levels of glutathione (A) and protein 
thiols (B) in skin homogenates of SKH-1 mice.  Animals were exposed to SSL (13.7 
mJ·CIE/cm2/day) for 1 hour, 5 days a week for 3 weeks.  Values are means + SEM of 3 
experiments.  *p < 0.05 vs control mice. 
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Figure 4.2.  Effects of simulated solar light on the level of vitamin E in skin 
homogenates of SKH-1 mice.  SKH-1 hairless mice, animals were exposed to SSL (13.7 
mJ·CIE/cm2/day; 1 hour, 5 days a week for 3 weeks). Values are means + SEM of 3 
experiments.  *p < 0.05 vs control mice. 
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Figure 4.3.  Total antioxidant reserve in skin homogenates of SKH-1 mice exposed to 
simulated solar light. SKH-1 hairless mice, animals were exposed to SSL (13.7 
mJ·CIE/cm2/day; 1 hour, 5 days a week for 3 weeks).Values are means + SEM of 3 
experiments.  *p < 0.05 vs control mice.  Inset- Characteristic chemiluminscence response 
generated by AAPH with luminol in the presence and in the absence of skin homogenates.  
The inset is the original recording showing the measurements of total antioxidant reserve of 
the skin homogenates.  In the presence of AAPH-derived peroxyl radicals, luminol is 
oxidized and produces a chemiluminescence response. 
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Figure 4.4. Accumulation of lipid peroxidation products in skin homogenates of SKH-1 
mice exposed to SSL.  SKH-1 hairless mice, animals were exposed to SSL (13.7 
mJ·CIE/cm2/day; 1 hour, 5 days a week for 3 weeks).Values are means + SEM of 3 
experiments. *p < 0.05 vs control mice. 
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Figure 4.5.  Pyrimidine dimer formation in the skin of SKH-1 mice after exposure to 
SSL. SKH-1 hairless mice, animals were exposed to SSL (13.7 mJ·CIE/cm2/day; 1 hour, 
5 days a week for 3 weeks).  Values are means + SEM of 3 experiments.  *p < 0.05 vs 
control mice. 
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Figure 4.6. (A, B).  Photomicrographs of skin of SKH-1 mice after exposure to SSL: A. 
Control; B. SSL.  (C). Myeloperoxidase activity in skin homogenates of SKH-1 mice 
exposed to simulated solar light.  SKH-1 hairless mice, animals were exposed to SSL 
(13.7 mJ·CIE/cm2/day) for 1 hour, 5 days a week for 3 weeks.  Values are means + SEM 
of 3 experiments.  *p < 0.05 vs control mice. 
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GENERAL DISCUSSION 
 
A growing body of evidence suggests that exposure to a number of occupational and 

environmental toxicants causes oxidative stress leading to short or long-term antioxidant 

deficiency and cellular dysfunction. Antioxidants, including vitamin E, vitamin C, and 

glutathione, are among the body's natural defense mechanisms against oxidative stress. 

The skin is recognized as a barrier to limit the penetration and absorption of biological, 

chemical and physical agents into the body.  The skin is considered a primary target and 

route of entry for environmental and occupational insults. The skin cells may create an 

oxidative environment, depending on predominance of redox processes catalyzed by both 

enzymatic and non-enzymatic systems. Exposure to chemical and environmental factors 

is capable of causing dermal toxicity.  It is believed that these chemical and 

environmental stressors work through a similar peroxidative mechanism by which they 

are able to exert their toxic outcomes.  Following exposure, the overproduction of free 

radicals could result in the development of antioxidant imbalance and oxidative stress, 

skin inflammation and injury eventually leading to DNA, protein, and lipid damage 

affecting the skin’s integrity and in some cases serving as a hallmark of carcinogenesis. 

 

Physical and chemical insults of importance in occupational and environmental 

exposures, e.g. UVR, Cum-OOH and PhOH, have been shown to induce dermal toxicity.  

Exposure of skin to UVR has been reported to induce the generation of lipid-derived free 

radicals ex vivo and in vivo (Black, 1987; Darr and Fridovich, 1994; Jurkiewicz and 

Buettner, 1994).  UV light exposure has also been shown to readily and easily oxidize 
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vitamin E to form α-tocopheroxyl radicals (Kagan et al., 1992) thus contributing to 

antioxidant deficiency and oxidative skin damage.  

 

Previous published work has shown that exposure to Cum-OOH results in the formation 

of lipid-derived free radicals in vitro in murine keratinocytes and skin flaps and skin in 

vivo.  Murine keratinocytes and skin flaps exposed to Cum-OOH in vitro form metal-

catalyzed alkoxyl, alkyl, and aryl radicals (Taffe et al., 1987; Timmins and Davies, 

1993).  We have demonstrated that topical exposure to Cum-OOH induced the formation 

of two radical species identified as methyl and methoxyl radical adducts detected in the 

skin.  The observed radical production in skin was clearly validated to occur due to the 

metabolic oxidation of Cum-OOH.  Depletion of vitamin E in skin via alimentary 

deprivation increased the radical production showing the importance of α-tocopherol in 

quenching the Cum-OOH-induced radical formation (Murray et al., 2005). 

 

PhOH exposure has been shown to easily contact and penetrate the skin.  Through the 

skin, it is able to enter the body and exert not only dermal effects but also systemic 

toxicity.  One proposed mechanism of PhOH toxicity is via a “futile thiol pumping” 

pathway.  Phenol and phenolic compounds are able to undergo one-electron oxidation to 

yield phenoxyl radicals.  This reaction is hypothesized to be catalyzed by the oxidative 

enzymes: peroxidase, prostaglandin synthetase, and tyrosinase present in the skin 

(Einstein et al., 1992).  Phenoxyl radicals derived by oxidative metabolism are reduced 

by thiols thereby regenerating PhOH.  As a result, PhOH is able to undergo repeated one 

electron oxidation.  Thiols, e.g. GSH, ameliorated the formation of phenoxyl radicals 
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which consequently yielded the formation of a thiyl radical. These thiyl radicals are 

subsequently able to interact with other thiol groups and/or oxygen to initiate new 

oxidative cascades to form new ROS (Stoyanovsky et al., 1995). 

 

It has been known that an important function of GSH lies in its antioxidant properties that 

are able to detoxify highly reactive peroxides via the conjugation of electrophiles and 

metals (Coles and Kadlubar, 2003; Fujii et al., 2003; Miyamoto et al., 2003; Zelck and 

Von Janowsky, 2004).  Therefore, reduction in GSH content in cutaneous cells and 

tissues make the skin vulnerable to oxidative injury.  The results of our study revealed 

that PhOH exposure to skin caused enhanced radical generation due to glutathione 

depletion with BSO or BCNU.  The data provide evidence of the importance of GSH in 

the skin’s antioxidant defense system against phenol-induced damage oxygen radicals 

formed during the oxidative metabolism of phenols.   

 

Presented data demonstrated that PhOH exposure to skin resulted in the formation of 

carbon-centered radical adducts derived from the skin lipids of topically exposed mice.  

The presence of the detected radicals was amplified when the skin environment was 

weakened as a result of depletion of GSH prior to PhOH exposure.  Computer simulation 

of the detected radical adducts revealed the presence of 2 radical species found in 

BCNU/PhOH and BSO/PhOH exposed mice.  Carbon-centered lipid radical adducts, i.e. 

methyl radicals, were the major radicals present in both BCNU/PhOH and BSO/PhOH 

exposed mice.  BCNU/PhOH-exposed mice also had an ESR-detectable oxygen-centered 

lipid radical adducts, i.e. lipoxyl radicals; while BSO/PhOH-exposed animals had an 
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ascorbyl radicals present in the ESR spectra.  The difference found in radical formation 

after BSO/PhOH and BCNU/PhOH treatements is most likely due to the transfer of the 

oxygen-centered radical present in the lipids  to the aqueous phase where the latter is able 

to oxidize ascorbate yielding the formation of a detected ascorbyl radicals after 

BSO/PhOH exposure. 

 

A complex antioxidant system is present in skin and is imperative for the prevention of 

free radical-induced skin injury (Catani et al., 2001).  Overproduction of ROS formed 

either directly after chemical exposures, or via vitamin E oxidation in the case of UVR, 

and/or from infiltrating inflammatory cells that are able to exhaust the antioxidant 

capacity of the skin causing oxidative stress and skin injury.  The synergistic GSH and 

ascorbate-dependent recycling of vitamin E (Packer, 1991; Martensson et al., 1991; 

Kagan and Packer, 1994; Guo and Packer, 2000; Shvedova et al., 2000; Shvedova et al., 

2001) consumes both GSH and ascorbate thereby affecting total antioxidant capacity thus 

making the skin vulnerable to occupational and environmental stressors.  Exposure of 

murine skin to SSL, Cum-OOH, and PhOH resulted in a significant depletion of GSH, 

vitamin E, and total antioxidant reserve throughout these exposures.  A decrease in 

vitamin E levels, the major lipid-soluble antioxidant, also increases the skin’s 

susceptibility to lipid peroxidation.  As a result, accumulation of lipid peroxidative 

products occurred in the skin of mice following exposure to SSL and Cum-OOH (Murray 

et al., 2005).   
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This imbalance in the antioxidant status of the skin tissue could trigger enhanced 

generation of ROS which is able to trigger oxidative damage to proteins, DNA, and lipids 

(Selassie et al., 1998). ROS overproduction and antioxidant imbalance are known to 

cause DNA modifications and damage. Under normal conditions, altered DNA is 

repaired by DNA glycosylase; however, overproduction of ROS and the resulting 

oxidative stress have been shown to circumvent DNA repair by glycosylases inducing 

mutagenesis and carcinogenesis (Chung et al., 1991).  DNA damage is able occur as a 

result of direct absorbtion of UVB radiation as well as mediated by ROS generation and 

interaction with DNA (Floyd, 1982; Sultana et al., 1995; Ahmed, 1999; Berneburg et al., 

1999; Kvam and Tyrell, 1997).  Cyclobutane pyrimidine dimers are a common form of 

UV-induced DNA base damage and were observed after dermal exposure of murine skin 

to SSL (Floyd, 1982; Sultana et al., 1995; Ahmed, 1999; Berneburg et al., 1999; Kvam 

and Tyrell, 1997).  Treatment of mice with Cum-OOH has also resulted in oxidative 

DNA damage as was determined by the formation of another commonly used indicator of 

DNA damage, 8-OHdG.  We also observed that oxidative DNA damage (8-OHdG) after 

Cum-OOH treatment was age-dependent with exposure causing formation of 8-OHdG in 

older animals while no oxidative DNA occurred in younger animals.  This difference was 

independent on the skin vitamin E status.  The observed differences in DNA damage 

occurring in young and old mice were most likely due to a decreased efficiency in DNA 

repair mechanisms as a result of aging (Chung et al., 1991). 

 

ROS overproduction and oxidative stress could interfere with a number of redox-

sensitive genes affecting signal transduction pathways.  It has been demonstrated that 
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nuclear factor kappa-b (NFκB) (Blanchard et al., 2001) and activator protein-1 (AP-1) are 

redox-sensitive and redox-responsive (Remacle et al., 1995; Allen et al., 2000; Cimino et 

al., 1997; Dhar et al., 2002).  It has been proposed that antioxidants are capable of 

regulating cytokine production via an NFkB-dependent pathway.  GSH depletion prior to 

PhOH exposure served as a background for an over-abundance of ROS thereby leading to 

an induction of skin inflammation (Gossett et al., 1999; Catani et al., 2001).  Cytokines, 

chemokines, and prostaglandins are effective mediators of oxidative stress and 

inflammation (Nussler et al., 1992; Desmarquest et al., 1998; Yamashita et al., 1999) 

which alter the cellular and tissue redox equilibrium (Chen et al., 1998).  This was 

supported by current studies showing that PhOH exposure induced the release of 

prostaglandin E2 and IL-1β found in the supernatants recovered from exposed JB6 

epidermal cells.  Depletion of GSH occurring prior to PhOH exposure further upregulated 

the release of inflammatory mediators.  

 

The different stages of the development and progression of melanoma have been 

correlated to changes in AP-1 activity (Angel et al., 2001).  AP-1 has been highlighted as 

a mediator of growth factors, oncogenes and the tumor promoter, TPA. AP-1 and its 

regulated gene expression are involved in pre-neoplastic to neoplastic progression in 

different cellular models (Domann et al., 1994; Dong et al., 1995; Huang et al., 1996; 

Jochum et al., 2001). OP, including Cum-OOH, have been shown to reveal tumor 

promoting properties in murine skin (Slaga et al., 1981; Athar et al., 1989; Timmins and 

Davies, 1993).  It has been shown that application of antioxidants ameoliorated cancer 

promotion (Perchellet and Perchellet, 1989; Taffe and Kensler, 1986a, b; Timmins and 
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Davies, 1993) indicating the critical role of free radicals in the promotion and 

development of tumors.  In our studies, animals initiated with DMBA and promoted with 

TPA had increased AP-1 activation yielding formation of papilloma. DMBA/Cum-OOH 

exposure has been shown to induce carcinoma formation while no carcinoma formation 

was observed in animals exposed to DMBA/TPA.  The observed papilloma and 

carcinoma formation was related to changes in the oxidative capacity in the skin of the 

animals.  It is believed that this occurs via a cyclooxygenase-2-(COX-2) mediated 

pathway which has been shown to play a prominent role in the pathophysiology of 

inflammation, tumor promotion, cell proliferation, and cancer (Chinery et al., 1999). 

ROS-induced DNA damage may also contribute to the observed increase in malignant 

transformation (O’Connell et al., 1986). 

 

The combination of ROS production, oxidative stress, and inflammation following 

different chemical exposures have been proposed to cause the development of a variety 

skin disorders and diseases (Miyachi et al., 1986; Kang et al., 2001; Oztas et al., 2003; 

Lontz et al., 1995; Filipe et al., 1997; Maresca et al., 1997; Kokcam and Naziroglu, 1999; 

Pereira et al., 1999; Wolber et al., 1996; DeLuca et al., 1998; Mundt et al., 1999; Niwa 

and Iizawa, 1994; Antille et al., 2002; Miyachi et al., 1985; Sharkey et al., 1991; Finnen 

et al., 1984; Schmidt et al., 1990; Senaldi et al., 1994; Fuchs and Milbradt, 1994; Hirai et 

al., 1997; Lange et al., 1998; Somani and Babu, 1989; Camera et al., 1998; Willis et al., 

1998; Kimura et al., 1998; Sarnstrand et al., 1999; Fuchs et al., 2001).  Decreases in 

antioxidant capabilities due to inhibition of GSH synthesis or GSSG reduction, vitamin E 
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deficiency, or aging significantly accelerated the skin damage found to occur following 

exposure to SSL, PhOH, and Cum-OOH.   

 

In conclusion, these studies found that exposure to chemical and physical agents caused 

the production of lipid-derived free radicals which are subsequently able to induce 

antioxidant imbalance and oxidative stress providing a background for dermal toxicity, 

extended inflammation, reduced skin integrity, and cancer as shown in the case of Cum-

OOH exposure.  The antioxidant network in the skin controls and regulates the formation 

of free radicals; however, excessive ROS formation could overwhelm the antioxidant 

function of the tissue. ROS-induced upregulation of AP-1 and NFkB pathways stimulates 

cytokine/chemokine production thus amplifying the inflammatory responses.  It should 

also be noted that long-term exposure to oxidizable chemicals, e.g. OP including Cum-

OOH, is capable of inducing carcinogenesis.  Finally, these studies show that altered 

antioxidant balance of the skin could be considered a key factor affecting skin integrity 

during oxidative injury induced by environmental and occupational exposures. 
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